Suppr超能文献

昆虫对渐进性缺氧的反应中心位于前胸神经节。

of the metathoracic ganglion in response to progressive hypoxia in an insect.

机构信息

School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA.

Animal Physiology and Systems Neurobiology, Humboldt University, Berlin, Philippstrasse 13, 10115 Berlin, Germany.

出版信息

Biol Lett. 2020 Nov;16(11):20200548. doi: 10.1098/rsbl.2020.0548. Epub 2020 Nov 4.

Abstract

Mammals regulate their brain tissue tightly, and only small changes in brain are required to elicit compensatory ventilation. However, unlike the flow-through cardiovascular system of vertebrates, insect tissues exchange gases through blind-ended tracheoles, which may involve a more prominent role for diffusive gas exchange. We tested the effect of progressive hypoxia on ventilation and the of the metathoracic ganglion (neural site of control of ventilation) using microelectrodes in the American locust, . In normal air (21 kPa), of the metathoracic ganglion was 12 kPa. The of the ganglion dropped as air dropped, with ventilatory responses occurring when ganglion reached 3 kPa. Unlike vertebrates, insects tolerate relatively high resting tissue levels and allow tissue to drop during hypoxia, activity and discontinuous gas exchange before activating convective or spiracular gas exchange. Tracheated animals, and possibly pancrustaceans in general, seem likely to generally experience wide spatial and temporal variation in tissue P compared with vertebrates, with important implications for physiological function and the evolution of oxygen-using proteins.

摘要

哺乳动物对脑组织的调节非常紧密,只需对大脑进行微小的改变即可引起代偿性通气。然而,与脊椎动物的贯穿式心血管系统不同,昆虫组织通过盲端的气管进行气体交换,这可能涉及到更突出的扩散气体交换作用。我们使用微电极在美洲蝗中测试了渐进性低氧对通气和胸部神经节(通气控制的神经部位)的影响。在正常空气中(21 kPa),胸部神经节的 为 12 kPa。随着空气 下降,神经节的 下降,当神经节 达到 3 kPa 时,就会出现通气反应。与脊椎动物不同,昆虫可以容忍相对较高的静息组织 水平,并允许组织在低氧条件下下降,在激活对流或气门气体交换之前进行活动和不连续的气体交换。有气管的动物,可能一般的甲壳类动物也是如此,与脊椎动物相比,它们的组织 P 可能会经历广泛的时空变化,这对生理功能和氧气利用蛋白的进化具有重要意义。

相似文献

1
of the metathoracic ganglion in response to progressive hypoxia in an insect.
Biol Lett. 2020 Nov;16(11):20200548. doi: 10.1098/rsbl.2020.0548. Epub 2020 Nov 4.
2
Acid-base and respiratory responses to hypoxia in the grasshopper Schistocerca americana.
J Exp Biol. 1998 Sep 22;201(Pt 20):2843-2855. doi: 10.1242/jeb.201.20.2843.
3
Handling and Use of Oxygen by Pancrustaceans: Conserved Patterns and the Evolution of Respiratory Structures.
Integr Comp Biol. 2015 Nov;55(5):802-15. doi: 10.1093/icb/icv055. Epub 2015 May 22.
4
Temperature and the Ventilatory Response to Hypoxia in Gromphadorhina portentosa (Blattodea: Blaberidae).
Environ Entomol. 2016 Apr;45(2):479-83. doi: 10.1093/ee/nvv217. Epub 2015 Dec 31.
5
Air breathing and aquatic gas exchange during hypoxia in armoured catfish.
J Comp Physiol B. 2017 Jan;187(1):117-133. doi: 10.1007/s00360-016-1024-y. Epub 2016 Jul 26.
6
[Phylogeny of gas exchange systems].
Anasthesiol Intensivmed Notfallmed Schmerzther. 2002 Apr;37(4):185-98. doi: 10.1055/s-2002-25080.
8
Effects of insect body size on tracheal structure and function.
Adv Exp Med Biol. 2007;618:221-8. doi: 10.1007/978-0-387-75434-5_17.
10
Control of resting ventilation rate in grasshoppers.
J Exp Biol. 1996;199(Pt 2):379-89. doi: 10.1242/jeb.199.2.379.

本文引用的文献

1
Oxygen limitation is not the cause of death during lethal heat exposure in an insect.
Biol Lett. 2019 Jan 31;15(1):20180701. doi: 10.1098/rsbl.2018.0701.
2
Respiratory gas levels interact to control ventilatory motor patterns in isolated locust ganglia.
J Exp Biol. 2019 Apr 26;222(Pt 8):jeb195388. doi: 10.1242/jeb.195388.
3
Managing the power grid: how myoglobin can regulate PO and energy distribution in skeletal muscle.
J Appl Physiol (1985). 2019 Mar 1;126(3):787-790. doi: 10.1152/japplphysiol.00614.2018. Epub 2018 Oct 18.
4
Advances in cellular and integrative control of oxygen homeostasis within the central nervous system.
J Physiol. 2018 Aug;596(15):3043-3065. doi: 10.1113/JP275890. Epub 2018 Jun 28.
5
On the existence of a central respiratory oxygen sensor.
J Appl Physiol (1985). 2017 Nov 1;123(5):1344-1349. doi: 10.1152/japplphysiol.00194.2017. Epub 2017 May 18.
6
Functional Oxygen Sensitivity of Astrocytes.
J Neurosci. 2015 Jul 22;35(29):10460-73. doi: 10.1523/JNEUROSCI.0045-15.2015.
7
How locusts breathe.
Physiology (Bethesda). 2013 Jan;28(1):18-27. doi: 10.1152/physiol.00043.2012.
8
A test of the oxidative damage hypothesis for discontinuous gas exchange in the locust Locusta migratoria.
Biol Lett. 2012 Aug 23;8(4):682-4. doi: 10.1098/rsbl.2012.0137. Epub 2012 Apr 4.
9
Spiracle activity in moth pupae--the role of oxygen and carbon dioxide revisited.
J Insect Physiol. 2010 May;56(5):492-501. doi: 10.1016/j.jinsphys.2009.06.003. Epub 2009 Jun 21.
10
How mitochondria produce reactive oxygen species.
Biochem J. 2009 Jan 1;417(1):1-13. doi: 10.1042/BJ20081386.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验