School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA.
Animal Physiology and Systems Neurobiology, Humboldt University, Berlin, Philippstrasse 13, 10115 Berlin, Germany.
Biol Lett. 2020 Nov;16(11):20200548. doi: 10.1098/rsbl.2020.0548. Epub 2020 Nov 4.
Mammals regulate their brain tissue tightly, and only small changes in brain are required to elicit compensatory ventilation. However, unlike the flow-through cardiovascular system of vertebrates, insect tissues exchange gases through blind-ended tracheoles, which may involve a more prominent role for diffusive gas exchange. We tested the effect of progressive hypoxia on ventilation and the of the metathoracic ganglion (neural site of control of ventilation) using microelectrodes in the American locust, . In normal air (21 kPa), of the metathoracic ganglion was 12 kPa. The of the ganglion dropped as air dropped, with ventilatory responses occurring when ganglion reached 3 kPa. Unlike vertebrates, insects tolerate relatively high resting tissue levels and allow tissue to drop during hypoxia, activity and discontinuous gas exchange before activating convective or spiracular gas exchange. Tracheated animals, and possibly pancrustaceans in general, seem likely to generally experience wide spatial and temporal variation in tissue P compared with vertebrates, with important implications for physiological function and the evolution of oxygen-using proteins.
哺乳动物对脑组织的调节非常紧密,只需对大脑进行微小的改变即可引起代偿性通气。然而,与脊椎动物的贯穿式心血管系统不同,昆虫组织通过盲端的气管进行气体交换,这可能涉及到更突出的扩散气体交换作用。我们使用微电极在美洲蝗中测试了渐进性低氧对通气和胸部神经节(通气控制的神经部位)的影响。在正常空气中(21 kPa),胸部神经节的 为 12 kPa。随着空气 下降,神经节的 下降,当神经节 达到 3 kPa 时,就会出现通气反应。与脊椎动物不同,昆虫可以容忍相对较高的静息组织 水平,并允许组织在低氧条件下下降,在激活对流或气门气体交换之前进行活动和不连续的气体交换。有气管的动物,可能一般的甲壳类动物也是如此,与脊椎动物相比,它们的组织 P 可能会经历广泛的时空变化,这对生理功能和氧气利用蛋白的进化具有重要意义。