Murphy Michael P
MRC Dunn Human Nutrition Unit, Hills Road, Cambridge CB20XY, UK.
Biochem J. 2009 Jan 1;417(1):1-13. doi: 10.1042/BJ20081386.
The production of ROS (reactive oxygen species) by mammalian mitochondria is important because it underlies oxidative damage in many pathologies and contributes to retrograde redox signalling from the organelle to the cytosol and nucleus. Superoxide (O2(-)) is the proximal mitochondrial ROS, and in the present review I outline the principles that govern O2(-) production within the matrix of mammalian mitochondria. The flux of O2(-) is related to the concentration of potential electron donors, the local concentration of O2 and the second-order rate constants for the reactions between them. Two modes of operation by isolated mitochondria result in significant O2(-) production, predominantly from complex I: (i) when the mitochondria are not making ATP and consequently have a high Deltap (protonmotive force) and a reduced CoQ (coenzyme Q) pool; and (ii) when there is a high NADH/NAD+ ratio in the mitochondrial matrix. For mitochondria that are actively making ATP, and consequently have a lower Deltap and NADH/NAD+ ratio, the extent of O2(-) production is far lower. The generation of O2(-) within the mitochondrial matrix depends critically on Deltap, the NADH/NAD+ and CoQH2/CoQ ratios and the local O2 concentration, which are all highly variable and difficult to measure in vivo. Consequently, it is not possible to estimate O2(-) generation by mitochondria in vivo from O2(-)-production rates by isolated mitochondria, and such extrapolations in the literature are misleading. Even so, the description outlined here facilitates the understanding of factors that favour mitochondrial ROS production. There is a clear need to develop better methods to measure mitochondrial O2(*-) and H2O2 formation in vivo, as uncertainty about these values hampers studies on the role of mitochondrial ROS in pathological oxidative damage and redox signalling.
哺乳动物线粒体产生活性氧(ROS)很重要,因为它是许多病理过程中氧化损伤的基础,并有助于从细胞器到细胞质和细胞核的逆行氧化还原信号传导。超氧化物(O2(-))是线粒体产生的近端活性氧,在本综述中,我概述了哺乳动物线粒体基质中O2(-)产生的调控原理。O2(-)的通量与潜在电子供体的浓度、局部O2浓度以及它们之间反应的二级速率常数有关。分离的线粒体有两种运作模式会导致大量O2(-)产生,主要来自复合体I:(i)当线粒体不产生ATP,因此具有高质子动力势(Deltap)和还原型辅酶Q(CoQ)池时;(ii)当线粒体基质中NADH/NAD+比例较高时。对于正在积极产生ATP,因此具有较低Deltap和NADH/NAD+比例的线粒体,O2(-)的产生程度要低得多。线粒体基质中O2(-)的产生关键取决于Deltap、NADH/NAD+和CoQH2/CoQ比例以及局部O2浓度,这些在体内都是高度可变且难以测量的。因此,不可能根据分离的线粒体的O2(-)产生速率来估计体内线粒体产生的O2(-),文献中的此类推断具有误导性。即便如此,这里概述的描述有助于理解有利于线粒体产生ROS的因素。显然需要开发更好的方法来测量体内线粒体O2(*-)和H2O2的形成,因为这些值的不确定性阻碍了关于线粒体ROS在病理性氧化损伤和氧化还原信号传导中作用的研究。