Suppr超能文献

利用拉曼光谱进行分子指纹成像以识别龋齿

Molecular Fingerprint Imaging to Identify Dental Caries Using Raman Spectroscopy.

作者信息

Miyamoto Nao, Adachi Tetsuya, Boschetto Francesco, Zanocco Matteo, Yamamoto Toshiro, Marin Elia, Somekawa Shota, Ashida Ryutaro, Zhu Wenliang, Kanamura Narisato, Nishimura Ichiro, Pezzotti Giuseppe

机构信息

Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan.

Infectious Diseases, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan.

出版信息

Materials (Basel). 2020 Oct 31;13(21):4900. doi: 10.3390/ma13214900.

Abstract

Tooth loss impairs mastication, deglutition and esthetics and affects systemic health through nutritional deficiency, weight loss, muscle weakness, delayed wound healing, and bone fragility. Approximately 90% of tooth loss is due to dental caries and periodontal disease. Accordingly, early treatment of dental caries is essential to maintaining quality of life. To date, the clinical diagnosis of dental caries has been based on each dentist's subjective assessment, but this visual method lacks objectivity. To improve diagnostic ability, highly sensitive quantitative methods have been developed for the diagnosis and prevention of dental caries and are gradually becoming a mandatory item in modern dentistry. High-resolution Raman spectroscopy is a suitable tool for recognizing the subtle structural changes that occur in dental enamel in already developed or, more importantly, incipient dental caries. Raman analysis could soon emerge as a breakthrough in dentistry because of its high diagnostic sensitivity. In this study, we build upon our previous findings in a new analysis of dental caries using Raman spectroscopy imaging and discuss the possibility of using Raman photonic imaging in support of objective diagnostics in dentistry. Our findings support the Raman method of caries detection in comparison with other conventional or new approaches.

摘要

牙齿缺失会损害咀嚼、吞咽功能以及美观,还会通过营养缺乏、体重减轻、肌肉无力、伤口愈合延迟和骨骼脆弱等影响全身健康。约90%的牙齿缺失是由龋齿和牙周病导致的。因此,早期治疗龋齿对于维持生活质量至关重要。迄今为止,龋齿的临床诊断一直基于每位牙医的主观评估,但这种视觉方法缺乏客观性。为提高诊断能力,已开发出用于龋齿诊断和预防的高灵敏度定量方法,且这些方法正逐渐成为现代牙科的一项必备项目。高分辨率拉曼光谱是识别已形成或更重要的是早期龋齿中牙釉质发生的细微结构变化的合适工具。由于其高诊断灵敏度,拉曼分析可能很快成为牙科领域的一项突破。在本研究中,我们基于之前的研究结果,利用拉曼光谱成像对龋齿进行新的分析,并探讨使用拉曼光子成像支持牙科客观诊断的可能性。与其他传统或新方法相比,我们的研究结果支持拉曼龋齿检测方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f322/7662967/82cac3413f5c/materials-13-04900-g001.jpg

相似文献

1
Molecular Fingerprint Imaging to Identify Dental Caries Using Raman Spectroscopy.
Materials (Basel). 2020 Oct 31;13(21):4900. doi: 10.3390/ma13214900.
6
Wide-field Raman imaging of dental lesions.
Analyst. 2014 Jun 21;139(12):3107-14. doi: 10.1039/c4an00164h. Epub 2014 Apr 30.
7
Optical diagnosis and characterization of dental caries with polarization-resolved hyperspectral stimulated Raman scattering microscopy.
Biomed Opt Express. 2016 Mar 15;7(4):1284-93. doi: 10.1364/BOE.7.001284. eCollection 2016 Apr 1.
8
Detection of early dental caries using polarized Raman spectroscopy.
Opt Express. 2006 Jan 9;14(1):203-15. doi: 10.1364/opex.14.000203.
9
Characterizing and identifying incipient carious lesions in dental enamel using micro-Raman spectroscopy.
Caries Res. 2013;47(1):27-33. doi: 10.1159/000342432. Epub 2012 Oct 10.
10
Full-scale Raman imaging for dental caries detection.
Biomed Opt Express. 2018 Nov 7;9(12):6009-6016. doi: 10.1364/BOE.9.006009. eCollection 2018 Dec 1.

引用本文的文献

1
Physicochemical understanding of biomineralization by molecular vibrational spectroscopy: From mechanism to nature.
Exploration (Beijing). 2023 Jul 26;3(6):20230033. doi: 10.1002/EXP.20230033. eCollection 2023 Dec.
3
In Situ Raman Analysis of Biofilm Exopolysaccharides Formed in and Commensal Cultures.
Int J Mol Sci. 2023 Apr 3;24(7):6694. doi: 10.3390/ijms24076694.
4
Deep learning and sub-band fluorescence imaging-based method for caries and calculus diagnosis embeddable on different smartphones.
Biomed Opt Express. 2023 Jan 24;14(2):866-882. doi: 10.1364/BOE.479818. eCollection 2023 Feb 1.
6
Remineralization of early enamel lesions with a novel prepared tricalcium silicate paste.
Sci Rep. 2022 Jun 15;12(1):9926. doi: 10.1038/s41598-022-13608-0.
8
Special Issue: Advances in Dental Bio-Nanomaterials.
Materials (Basel). 2022 Mar 12;15(6):2098. doi: 10.3390/ma15062098.
9
In vitro mineral apposition analysis of two Colombian plant extracts on Amelogenesis imperfecta teeth.
Clin Exp Dent Res. 2022 Feb;8(1):336-349. doi: 10.1002/cre2.485. Epub 2021 Sep 9.

本文引用的文献

1
An Investigation of Diagnostic Performance of DIAGNOdent Pen and the Canary System for Assessment and Monitoring Enamel Caries under Fissure Sealants.
J Int Soc Prev Community Dent. 2020 Jun 15;10(3):246-254. doi: 10.4103/jispcd.JISPCD_480_19. eCollection 2020 May-Jun.
2
Transillumination and HDR Imaging for Proximal Caries Detection.
J Dent Res. 2018 Jul;97(7):844-849. doi: 10.1177/0022034518759957. Epub 2018 Feb 26.
4
Diagnostic validity of ICDAS and DIAGNOdent combined: an in vitro study in pre-cavitated lesions.
Lasers Med Sci. 2017 Apr;32(3):543-548. doi: 10.1007/s10103-017-2146-5. Epub 2017 Jan 18.
5
Vibrational monitor of early demineralization in tooth enamel after in vitro exposure to phosphoridic liquid.
Spectrochim Acta A Mol Biomol Spectrosc. 2017 Feb 15;173:19-33. doi: 10.1016/j.saa.2016.08.036. Epub 2016 Aug 26.
6
Diagnosis and Prevention Strategies for Dental Caries.
J Lifestyle Med. 2013 Sep;3(2):107-9. Epub 2013 Sep 30.
8
Radiographic caries detection: A systematic review and meta-analysis.
J Dent. 2015 Aug;43(8):924-33. doi: 10.1016/j.jdent.2015.02.009. Epub 2015 Feb 24.
9
Dental materials. Amorphous intergranular phases control the properties of rodent tooth enamel.
Science. 2015 Feb 13;347(6223):746-50. doi: 10.1126/science.1258950.
10
Vibrational algorithms for quantitative crystallographic analyses of hydroxyapatite-based biomaterials: I, theoretical foundations.
Anal Bioanal Chem. 2015 May;407(12):3325-42. doi: 10.1007/s00216-015-8472-1. Epub 2015 Feb 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验