Barmaki Samineh, Obermaier Daniela, Kankuri Esko, Vuola Jyrki, Franssila Sami, Jokinen Ville
Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland.
PreSens Precision Sensing GmbH, 93053 Regensburg, Germany.
Micromachines (Basel). 2020 Oct 30;11(11):979. doi: 10.3390/mi11110979.
A hypoxic (low oxygen level) microenvironment and nitric oxide paracrine signaling play important roles in the control of both biological and pathological cell responses. In this study, we present a microfluidic chip architecture for nitric oxide delivery under a hypoxic microenvironment in human embryonic kidney cells (HEK-293). The chip utilizes two separate, but interdigitated microfluidic channels. The hypoxic microenvironment was created by sodium sulfite as the oxygen scavenger in one of the channels. The nitric oxide microenvironment was created by sodium nitroprusside as the light-activated nitric oxide donor in the other channel. The solutions are separated from the cell culture by a 30 µm thick gas-permeable, but liquid-impermeable polydimethylsiloxane membrane. We show that the architecture is preliminarily feasible to define the gaseous microenvironment of a cell culture in the 100 µm and 1 mm length scales.
缺氧(低氧水平)微环境和一氧化氮旁分泌信号在控制生物和病理细胞反应中发挥着重要作用。在本研究中,我们展示了一种用于在人胚肾细胞(HEK - 293)的缺氧微环境下递送一氧化氮的微流控芯片架构。该芯片利用两个独立但相互交错的微流控通道。在其中一个通道中,通过亚硫酸钠作为氧气清除剂来创建缺氧微环境。在另一个通道中,通过硝普钠作为光激活一氧化氮供体来创建一氧化氮微环境。溶液通过30 µm厚的透气但不透液的聚二甲基硅氧烷膜与细胞培养物隔开。我们表明,该架构在定义100 µm和1 mm长度尺度的细胞培养气体微环境方面初步可行。