State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China.
State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China; HKBU Institute for Research and Continuing Education, Shenzhen, China.
Environ Pollut. 2021 Jan 1;268(Pt A):115774. doi: 10.1016/j.envpol.2020.115774. Epub 2020 Oct 27.
Perfluorooctane sulfonate (PFOS) is one of the most widely used and distributed perfluorinated compounds proven to cause adverse health outcomes. Datasets of ecotoxico-genomics and proteomics have given greater insights for PFOS toxicological effect. However, the molecular mechanisms of hepatotoxicity of PFOS on post-translational modifications (PTMs) regulation, which is most relevant for regulating the activity of proteins, are not well elucidated. Protein glycosylation is one of the most ubiquitous PTMs associated with diverse cellular functions, which are critical towards the understanding of the multiple biological processes and toxic mechanisms exposed to PFOS. Here, we exploit the multilayered glycoproteomics to quantify the global protein expression levels, glycosylation sites, and glycoproteins in PFOS exposure and wild-type mouse livers. The identified 2439 proteins, 1292 glycosites, and 799 glycoproteins were displayed complex heterogeneity in PFOS exposure mouse livers. Quantification results reveal that 241 dysregulated proteins (fold change ≥ 2, p < 0.05) in PFOS exposure mouse livers were involved in the lipid and xenobiotic metabolism. While, 16 overexpressed glycoproteins were exclusively related to neutrophil degranulation, cellular responses to stress, protein processing in endoplasmic reticulum (ER). Moreover, the interactome and functional network analysis identified HP and HSP90AA1 as the potential glycoprotein biomarkers. These results provide unique insights into a deep understanding of the mechanisms of PFOS induced hepatotoxicity and liver disease. Our platform of multilayered glycoproteomics can be adapted to diverse ecotoxicological research.
全氟辛烷磺酸 (PFOS) 是一种用途最广泛、分布最广的全氟化合物,已被证明会对健康造成不良影响。生态毒基因组学和蛋白质组学数据集为 PFOS 毒理学效应提供了更深入的了解。然而,PFOS 对翻译后修饰 (PTMs) 调节的肝毒性的分子机制尚未得到很好的阐明,PTMs 调节对蛋白质活性的调节最为相关。蛋白质糖基化是与多种细胞功能相关的最普遍的 PTM 之一,对于理解暴露于 PFOS 时的多种生物学过程和毒性机制至关重要。在这里,我们利用多层糖蛋白质组学来定量测量 PFOS 暴露和野生型小鼠肝脏中的全局蛋白质表达水平、糖基化位点和糖蛋白。在 PFOS 暴露的小鼠肝脏中,鉴定出的 2439 种蛋白质、1292 个糖基位点和 799 种糖蛋白显示出复杂的异质性。定量结果表明,PFOS 暴露的小鼠肝脏中有 241 个失调蛋白(变化倍数≥2,p<0.05)参与了脂质和外源性代谢物的代谢。而 16 种过表达的糖蛋白仅与嗜中性粒细胞脱颗粒、细胞应激反应、内质网 (ER) 中的蛋白质加工有关。此外,互作网络和功能网络分析确定 HP 和 HSP90AA1 为潜在的糖蛋白生物标志物。这些结果为深入了解 PFOS 诱导的肝毒性和肝病机制提供了独特的见解。我们的多层糖蛋白质组学平台可以适应各种生态毒理学研究。