Suppr超能文献

关于设定新型药物制剂职业接触限值的考量因素。

Considerations for setting occupational exposure limits for novel pharmaceutical modalities.

作者信息

Graham Jessica C, Hillegass Jedd, Schulze Gene

机构信息

Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, NJ, 08903, USA.

Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, NJ, 08903, USA.

出版信息

Regul Toxicol Pharmacol. 2020 Dec;118:104813. doi: 10.1016/j.yrtph.2020.104813. Epub 2020 Nov 2.

Abstract

In order to develop new and effective medicines, pharmaceutical companies must be modality agnostic. As science reveals an enhanced understanding of biological processes, new therapeutic modalities are becoming important in developing breakthrough therapies to treat both rare and common diseases. As these new modalities progress, concern and uncertainty arise regarding their safe handling by the researchers developing them, employees manufacturing them and nurses administering them. This manuscript reviews the available literature for emerging modalities (including oligonucleotides, monoclonal antibodies, fusion proteins and bispecific antibodies, antibody-drug conjugates, peptides, vaccines, genetically modified organisms, and several others) and provides considerations for occupational health and safety-oriented hazard identification and risk assessments to enable timely, consistent and well-informed hazard identification, hazard communication and risk-management decisions. This manuscript also points out instances where historical exposure control banding systems may not be applicable (e.g. oncolytic viruses, biologics) and where other occupational exposure limit systems are more applicable (e.g. Biosafety Levels, Biologic Control Categories).

摘要

为了开发新的有效药物,制药公司必须不受治疗方式的限制。随着科学对生物过程的理解不断加深,新的治疗方式在开发治疗罕见病和常见疾病的突破性疗法中变得越来越重要。随着这些新方式的发展,开发它们的研究人员、生产它们的员工以及给药的护士在安全处理方面产生了担忧和不确定性。本手稿回顾了新兴治疗方式(包括寡核苷酸、单克隆抗体、融合蛋白和双特异性抗体、抗体药物偶联物、肽、疫苗、转基因生物等)的现有文献,并为职业健康与安全导向的危害识别和风险评估提供了考量因素,以便能够及时、一致且明智地做出危害识别、危害沟通和风险管理决策。本手稿还指出了历史暴露控制分级系统可能不适用的情况(例如溶瘤病毒、生物制品)以及其他职业接触限值系统更适用的情况(例如生物安全级别、生物控制类别)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6630/7605856/b41e48463d23/fx1_lrg.jpg

相似文献

1
Considerations for setting occupational exposure limits for novel pharmaceutical modalities.
Regul Toxicol Pharmacol. 2020 Dec;118:104813. doi: 10.1016/j.yrtph.2020.104813. Epub 2020 Nov 2.
2
Special endpoint and product specific considerations in pharmaceutical acceptable daily exposure derivation.
Regul Toxicol Pharmacol. 2016 Aug;79 Suppl 1:S79-93. doi: 10.1016/j.yrtph.2016.05.022. Epub 2016 May 24.
3
The regulatory framework for preventing cross-contamination of pharmaceutical products: History and considerations for the future.
Regul Toxicol Pharmacol. 2016 Aug;79 Suppl 1:S3-S10. doi: 10.1016/j.yrtph.2016.05.029. Epub 2016 May 24.
4
Strategies for preventing occupational exposure to potent compounds.
Toxicol Mech Methods. 2011 Feb;21(2):93-6. doi: 10.3109/15376516.2010.484621. Epub 2010 May 27.
5
Challenges of Using Closed System Transfer Devices With Biological Drug Products: An Industry Perspective.
J Pharm Sci. 2020 Jan;109(1):22-29. doi: 10.1016/j.xphs.2019.10.042. Epub 2019 Nov 4.
6
7
Setting occupational exposure limits for unstudied pharmaceutical intermediates using an in vitro parallelogram approach.
Toxicol Mech Methods. 2011 Feb;21(2):76-85. doi: 10.3109/15376511003638280. Epub 2010 Feb 15.
8
A harmonization effort for acceptable daily exposure application to pharmaceutical manufacturing - Operational considerations.
Regul Toxicol Pharmacol. 2016 Aug;79 Suppl 1:S39-47. doi: 10.1016/j.yrtph.2016.06.001. Epub 2016 Jun 3.
9
Occupational toxicology and the control of exposure to pharmaceutical agents at work.
Occup Med (Lond). 2003 Sep;53(6):363-70. doi: 10.1093/occmed/kqg116.
10
Using default methodologies to derive an acceptable daily exposure (ADE).
Regul Toxicol Pharmacol. 2016 Aug;79 Suppl 1:S28-38. doi: 10.1016/j.yrtph.2016.05.026. Epub 2016 May 24.

引用本文的文献

1
Occupational hygiene risk assessment at light speed-a study for protecting worker health and safety in the biopharmaceutical industry.
Front Public Health. 2025 Jun 25;13:1559588. doi: 10.3389/fpubh.2025.1559588. eCollection 2025.
2
An Industry Proposal for a Cell and Gene Therapy Safety Data Sheet.
Appl Biosaf. 2023 Sep 1;28(3):176-191. doi: 10.1089/apb.2023.0009. Epub 2023 Sep 12.
4
Occupational Exposure Risks When Working with Protein Therapeutics and the Development of a Biologics Banding System.
Appl Biosaf. 2021 Dec 1;26(4):193-204. doi: 10.1089/apb.2021.0004. Epub 2021 Nov 24.

本文引用的文献

1
The COVID-19 vaccine development landscape.
Nat Rev Drug Discov. 2020 May;19(5):305-306. doi: 10.1038/d41573-020-00073-5.
3
Bispecific antibodies: a mechanistic review of the pipeline.
Nat Rev Drug Discov. 2019 Aug;18(8):585-608. doi: 10.1038/s41573-019-0028-1.
4
Chemical and physical instabilities in manufacturing and storage of therapeutic proteins.
Curr Opin Biotechnol. 2019 Dec;60:159-167. doi: 10.1016/j.copbio.2019.01.014. Epub 2019 Mar 9.
6
7
Bioavailability of protein therapeutics in rats following inhalation exposure: Relevance to occupational exposure limit calculations.
Regul Toxicol Pharmacol. 2018 Dec;100:35-44. doi: 10.1016/j.yrtph.2018.10.003. Epub 2018 Oct 3.
8
A practical guide to the handling and administration of personalized transcriptionally attenuated oncolytic adenoviruses (PTAVs).
Oncoimmunology. 2018 Jul 23;7(9):e1478648. doi: 10.1080/2162402X.2018.1478648. eCollection 2018.
9
Antibody-cytokine fusion proteins: Biopharmaceuticals with immunomodulatory properties for cancer therapy.
Adv Drug Deliv Rev. 2019 Feb 15;141:67-91. doi: 10.1016/j.addr.2018.09.002. Epub 2018 Sep 7.
10
Antibody-Drug Conjugates: A Review on the Epitome of Targeted Anti- Cancer Therapy.
Curr Clin Pharmacol. 2018;13(4):236-251. doi: 10.2174/1574884712666180802095521.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验