Suppr超能文献

设定制药行业中遗传毒性物质的职业接触限值。

Setting Occupational Exposure Limits for Genotoxic Substances in the Pharmaceutical Industry.

作者信息

Lovsin Barle Ester, Winkler Gian Christian, Glowienke Susanne, Elhajouji Azeddine, Nunic Jana, Martus Hans-Joerg

机构信息

*Novartis Pharma AG, Postfach, CH-4002 Basel, Switzerland

Novartis Pharma AG NIBR, Postfach, CH-4002 Basel, Switzerland; and.

出版信息

Toxicol Sci. 2016 May;151(1):2-9. doi: 10.1093/toxsci/kfw028.

Abstract

In the pharmaceutical industry, genotoxic drug substances are developed for life-threatening indications such as cancer. Healthy employees handle these substances during research, development, and manufacturing; therefore, safe handling of genotoxic substances is essential. When an adequate preclinical dataset is available, a risk-based decision related to exposure controls for manufacturing is made following a determination of safe health-based limits, such as an occupational exposure limit (OEL). OELs are calculated for substances based on a threshold dose-response once a threshold is identified. In this review, we present examples of genotoxic mechanisms where thresholds can be demonstrated and OELs can be calculated, including a holistic toxicity assessment. We also propose a novel approach for inhalation Threshold of Toxicological Concern (TTC) limit for genotoxic substances in cases where the database is not adequate to determine a threshold.

摘要

在制药行业,具有基因毒性的原料药是针对癌症等危及生命的适应症而研发的。健康的员工在研究、开发和生产过程中会接触这些物质;因此,安全处理基因毒性物质至关重要。当有足够的临床前数据集时,在确定基于健康的安全限值(如职业接触限值(OEL))后,会做出与生产过程中的接触控制相关的基于风险的决策。一旦确定了阈值,就会根据阈值剂量反应为物质计算OEL。在本综述中,我们列举了一些基因毒性机制的例子,在这些例子中可以证明阈值并计算OEL,包括全面的毒性评估。我们还提出了一种新方法,用于在数据库不足以确定阈值的情况下,计算基因毒性物质的吸入毒理学关注阈值(TTC)限值。

相似文献

1
2
A harmonization effort for acceptable daily exposure application to pharmaceutical manufacturing - Operational considerations.
Regul Toxicol Pharmacol. 2016 Aug;79 Suppl 1:S39-47. doi: 10.1016/j.yrtph.2016.06.001. Epub 2016 Jun 3.
4
6
Industry Derived Occupational Exposure Limits: A Survey of Professionals on the Dutch System of Exposure Guidelines.
Ann Work Expo Health. 2019 Nov 13;63(9):1004-1012. doi: 10.1093/annweh/wxz069.
7
Disease area and mode of action as criteria to assign a default occupational exposure limit.
Regul Toxicol Pharmacol. 2021 Jun;122:104891. doi: 10.1016/j.yrtph.2021.104891. Epub 2021 Feb 12.
8
The occupational exposure level (OEL) for 2-bromopropane: the first OEL established by Korea.
Appl Occup Environ Hyg. 1999 Jun;14(6):356-8. doi: 10.1080/104732299302729.
9
Approaches for setting occupational exposure limits in the pharmaceutical industry.
J Appl Toxicol. 2022 Jan;42(1):154-167. doi: 10.1002/jat.4218. Epub 2021 Jul 12.
10
Advances in Inhalation Dosimetry Models and Methods for Occupational Risk Assessment and Exposure Limit Derivation.
J Occup Environ Hyg. 2015;12 Suppl 1(sup1):S18-40. doi: 10.1080/15459624.2015.1060328.

引用本文的文献

2
Preliminary toxicological assessment of heated tobacco products: A review of the literature and proposed strategy.
Toxicol Rep. 2023 Jan 20;10:195-205. doi: 10.1016/j.toxrep.2023.01.008. eCollection 2023.
3
4
Guidance on the use of the Threshold of Toxicological Concern approach in food safety assessment.
EFSA J. 2019 Jun 6;17(6):e05708. doi: 10.2903/j.efsa.2019.5708. eCollection 2019 Jun.

本文引用的文献

1
Using default methodologies to derive an acceptable daily exposure (ADE).
Regul Toxicol Pharmacol. 2016 Aug;79 Suppl 1:S28-38. doi: 10.1016/j.yrtph.2016.05.026. Epub 2016 May 24.
2
Point of departure (PoD) selection for the derivation of acceptable daily exposures (ADEs) for active pharmaceutical ingredients (APIs).
Regul Toxicol Pharmacol. 2016 Aug;79 Suppl 1:S48-56. doi: 10.1016/j.yrtph.2016.05.028. Epub 2016 May 24.
3
Special endpoint and product specific considerations in pharmaceutical acceptable daily exposure derivation.
Regul Toxicol Pharmacol. 2016 Aug;79 Suppl 1:S79-93. doi: 10.1016/j.yrtph.2016.05.022. Epub 2016 May 24.
4
Toxicokinetic and toxicodynamic considerations when deriving health-based exposure limits for pharmaceuticals.
Regul Toxicol Pharmacol. 2016 Aug;79 Suppl 1:S67-78. doi: 10.1016/j.yrtph.2016.05.027. Epub 2016 May 22.
5
A harmonization effort for acceptable daily exposure derivation - Considerations for application of adjustment factors.
Regul Toxicol Pharmacol. 2016 Aug;79 Suppl 1:S57-66. doi: 10.1016/j.yrtph.2016.05.023. Epub 2016 May 21.
7
IWGT report on quantitative approaches to genotoxicity risk assessment I. Methods and metrics for defining exposure-response relationships and points of departure (PoDs).
Mutat Res Genet Toxicol Environ Mutagen. 2015 May 1;783:55-65. doi: 10.1016/j.mrgentox.2014.09.011. Epub 2014 Oct 13.
8
Assessment of mechanisms driving non-linear dose-response relationships in genotoxicity testing.
Mutat Res Rev Mutat Res. 2015 Jan-Mar;763:181-201. doi: 10.1016/j.mrrev.2014.11.001. Epub 2014 Nov 11.
10
Quantitative dose-response analysis of ethyl methanesulfonate genotoxicity in adult gpt-delta transgenic mice.
Environ Mol Mutagen. 2014 Jun;55(5):385-99. doi: 10.1002/em.21854. Epub 2014 Feb 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验