病毒-宿主互作组学途径富集分析及针对刺突糖蛋白受体结合域-人血管紧张素转化酶 2 界面的新型化合物的优先级排序,以对抗 SARS-CoV-2。

Pathway enrichment analysis of virus-host interactome and prioritization of novel compounds targeting the spike glycoprotein receptor binding domain-human angiotensin-converting enzyme 2 interface to combat SARS-CoV-2.

机构信息

Central Research Lab, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore, India.

Department of Biotechnology and Bioinformatics, Kuvempu University, Shankaraghatta, Shivamogga, India.

出版信息

J Biomol Struct Dyn. 2022 Apr;40(6):2701-2714. doi: 10.1080/07391102.2020.1841681. Epub 2020 Nov 4.

Abstract

SARS-CoV-2 has become a pandemic causing a serious global health concern. The absence of effective drugs for treatment of the disease has caused its rapid spread on a global scale. Similarly to the SARS-CoV, the SARS-CoV-2 is also involved in a complex interplay with the host cells. This infection is characterized by a diffused alveolar damage consistent with the Acute Respiratory Disease Syndrome (ARDS). To explore the complex mechanisms of the disease at the system level, we used a network medicine tools approach. The protein-protein interactions (PPIs) between the SARS-CoV and the associated human cell proteins are crucial for the viral pathogenesis. Since the cellular entry of SARS-CoV-2 is accomplished by binding of the spike glycoprotein binding domain (RBD) to the human angiotensin-converting enzyme 2 (hACE2), a molecule that can bind to the spike RDB-hACE2 interface could block the virus entry. Here, we performed a virtual screening of 55 compounds to identify potential molecules that can bind to the spike glycoprotein and spike-ACE2 complex interface. It was found that the compound ethyl 1-{3-[(2,4-dichlorobenzyl) carbamoyl]-1-ethyl-6-fluoro-4-oxo-1,4-dihydro-7-quinolinyl}-4-piperidine carboxylate (the S54 ligand) and ethyl 1-{3-[(2,4-dichlorobenzyl) carbamoyl]-1-ethyl-6-fluoro-4-oxo-1,4-dihydro-7-quinolinyl}-4 piperazine carboxylate (the S55 ligand) forms hydrophobic interactions with Tyr41A, Tyr505B and Tyr553B, Leu29A, Phe495B, respectively of the spike glycoprotein, the hotspot residues in the spike glycoprotein RBD-hACE2 binding interface. Furthermore, molecular dynamics simulations and free energy calculations using the MM-GBSA method showed that the S54 ligand is a stronger binder than a known SARS-CoV spike inhibitor SSAA09E3 (N-(9,10-dioxo-9, 10-dihydroanthracen-2-yl) benzamide).Communicated by Ramaswamy H. Sarma.

摘要

SARS-CoV-2 已成为一种大流行病毒,对全球健康造成严重威胁。目前尚无有效的治疗药物,导致其在全球范围内迅速传播。与 SARS-CoV 类似,SARS-CoV-2 与宿主细胞之间也存在着复杂的相互作用。这种感染的特征是弥漫性肺泡损伤,符合急性呼吸窘迫综合征(ARDS)的特征。为了从系统水平上探索疾病的复杂机制,我们使用了网络医学工具方法。SARS-CoV 与相关的人类细胞蛋白之间的蛋白-蛋白相互作用(PPIs)对于病毒发病机制至关重要。由于 SARS-CoV-2 的细胞进入是通过刺突糖蛋白结合域(RBD)与人类血管紧张素转换酶 2(hACE2)结合来完成的,因此可以结合刺突 RBD-hACE2 界面的分子可以阻断病毒进入。在这里,我们对 55 种化合物进行了虚拟筛选,以确定可以与刺突糖蛋白和刺突-ACE2 复合物界面结合的潜在分子。结果发现,化合物乙基 1-{3-[(2,4-二氯苄基)氨甲酰基]-1-乙基-6-氟-4-氧代-1,4-二氢-7-喹啉基}-4-哌啶甲酸酯(S54 配体)和乙基 1-{3-[(2,4-二氯苄基)氨甲酰基]-1-乙基-6-氟-4-氧代-1,4-二氢-7-喹啉基}-4-哌嗪甲酸酯(S55 配体)分别与刺突糖蛋白中的 Tyr41A、Tyr505B 和 Tyr553B、Leu29A、Phe495B 形成疏水相互作用,这些是刺突糖蛋白 RBD-hACE2 结合界面中的热点残基。此外,使用 MM-GBSA 方法进行分子动力学模拟和自由能计算表明,S54 配体比已知的 SARS-CoV 刺突抑制剂 SSAA09E3(N-(9,10-二氧代-9,10-二氢蒽-2-基)苯甲酰胺)具有更强的结合能力。由 Ramaswamy H. Sarma 交流。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索