Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar- Delhi G.T. Road (NH-1), Phagwara, Punjab-144401, India.
Mini Rev Med Chem. 2021;21(6):689-703. doi: 10.2174/1389557520666201117111259.
COVID-19 has become a pandemic with higher morbidity and mortality rates after its start from Wuhan city of China. The infection by RNA virus, also known as SARS-CoV-2 or 2019-nCoV, from the beta class of coronaviruses, has been found to be responsible for COVID-19. Structural analysis and evidences have been indicated that interaction between a segment of receptor binding domain (RBD) from S protein of the virus and human angiotensin-converting enzyme 2 (hACE2) is essential for cellular entry of the virus.
The current review sheds light on structural aspects for the inhibition of RBD-hACE2 interaction mediated cellular entry of SARS-CoV-2.
The present study provides a critical review of recently published information on RBDhACE2 interaction and its inhibitors to control SARS-CoV-2 infection. The review highlighted the structural aspects of the interaction between RBD-hACE2 and involved amino acid residues.
Recently, several studies are being conducted for the inhibition of the SARS-CoV-2 attachment and entry to the human cellular system. One of the important targets for viral invasion is its binding with cell surface receptor, hACE2, through RBD on S-protein. Mimicking of three residues on ACE2 (Lys31, Glu35 and Lys353 on B chain) provided a hot target directed strategy for the inhibition of early attachment of the virus to the cell. Early screening of peptidic or non-peptidic molecules for the inhibition of RBD-hACE2 interaction has raised the hope for potential therapeutics against COVID-19. The higher affinity of molecules toward RBD than ACE2 is an important factor for selectivity and minimization of ACE2 related adverse events on the cardiovascular system, brain, kidney, and foetus development during pregnancy.
Inhibition of RBD-hACE2 interaction by different molecular scaffolds can be used as a preferred strategy for control of SARS-CoV-2 infection. Recently, published reports pointed out Lys31, Glu35 and Lys353 on the B chain of ACE2 as crucial residues for mimicking and design of novel molecules as inhibitors SARS-CoV-2 attachment to human cells. Moreover, some recently identified RBD-hACE2 interaction inhibitors have also been described with their protein binding pattern and potencies (IC50 values), which will help for further improvement in the selectivity.
自中国武汉市爆发以来,COVID-19 已成为一种发病率和死亡率更高的大流行病。这种由 RNA 病毒引起的感染,也称为 SARS-CoV-2 或 2019-nCoV,属于β类冠状病毒,已被发现可导致 COVID-19。结构分析和证据表明,病毒 S 蛋白上的受体结合域(RBD)的一个片段与人类血管紧张素转换酶 2(hACE2)之间的相互作用对于病毒的细胞进入至关重要。
本综述重点介绍了抑制 RBD-hACE2 相互作用介导的 SARS-CoV-2 细胞进入的结构方面。
本研究对最近发表的关于 RBD-hACE2 相互作用及其抑制剂以控制 SARS-CoV-2 感染的信息进行了批判性综述。该综述强调了 RBD-hACE2 相互作用及其涉及的氨基酸残基的结构方面。
最近,正在进行几项抑制 SARS-CoV-2 附着和进入人体细胞系统的研究。病毒入侵的一个重要目标是通过 S 蛋白上的 RBD 与细胞表面受体 hACE2 结合。模拟 ACE2 上的三个残基(B 链上的 Lys31、Glu35 和 Lys353)为抑制病毒早期附着细胞提供了一个靶向策略。早期筛选抑制 RBD-hACE2 相互作用的肽或非肽分子为 COVID-19 的潜在治疗方法带来了希望。与 ACE2 相比,分子对 RBD 的更高亲和力是选择性的重要因素,并最大限度地减少了心血管系统、大脑、肾脏和怀孕期间胎儿发育方面的 ACE2 相关不良事件。
通过不同的分子支架抑制 RBD-hACE2 相互作用可作为控制 SARS-CoV-2 感染的首选策略。最近发表的报告指出,ACE2 B 链上的 Lys31、Glu35 和 Lys353 是模拟和设计新型分子作为抑制 SARS-CoV-2 附着于人类细胞的抑制剂的关键残基。此外,还描述了一些最近确定的 RBD-hACE2 相互作用抑制剂及其与蛋白质的结合模式和效力(IC50 值),这将有助于进一步提高选择性。