Universidade Federal de Santa Catarina, Centro de Ciências Biológicas, Departamento de Bioquímica, Florianópolis, SC, Brasil.
Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brasil.
Mem Inst Oswaldo Cruz. 2020 Oct 30;115:e200401. doi: 10.1590/0074-02760200401. eCollection 2020.
Candida glabrata yeast is the second cause of candidiasis worldwide. Differs from other yeasts since assimilates only glucose and trehalose (a characteristic used in rapid identification tests for this pathogen) by secreting into the medium a highly active acid trehalase encoded by the CgATH1 gene.
This study aimed to characterise the function of the acid trehalase in the physiopathology of C. glabrata.
Gene deletion was performed to obtain a mutant ath1Δ strain, and the ability of the ath1Δ strain to grow in trehalase, or the presence of trehalase activity in the ath1Δ yeast cells, was verified. We also tested the virulence of the ath1Δ strain in a murine model of infection.
The ath1Δ mutant strain grows normally in the presence of glucose, but loses its ability to grow in trehalose. Due to the high acid trehalase activity present in wild-type cells, the cytoplasmic neutral trehalase activity is only detected in the ath1Δ strain. We also observed a significantly lower virulence of the ath1Δ strain in a murine model of infection with either normal or immunocompromised mice.
The acid trehalase is involved in the hydrolysis of external trehalose by C. glabrata, and the enzyme also plays a major virulence role during infectivity.
光滑念珠菌是全球范围内导致念珠菌病的第二大原因。与其他酵母不同,它仅通过分泌一种高度活跃的酸性海藻糖酶(由 CgATH1 基因编码)来利用葡萄糖和海藻糖(用于快速鉴定这种病原体的特征)来同化。
本研究旨在探讨酸性海藻糖酶在光滑念珠菌生理病理中的功能。
通过基因缺失获得 ath1Δ 突变株,并验证 ath1Δ 菌株在海藻糖酶中的生长能力或 ath1Δ 酵母细胞中是否存在海藻糖酶活性。我们还在感染的小鼠模型中测试了 ath1Δ 菌株的毒力。
ath1Δ 突变株在葡萄糖存在的情况下正常生长,但丧失了在海藻糖中生长的能力。由于野生型细胞中存在高酸性海藻糖酶活性,只有在 ath1Δ 菌株中才能检测到细胞质中性海藻糖酶活性。我们还观察到 ath1Δ 菌株在正常或免疫功能低下的小鼠感染的小鼠模型中的毒力明显降低。
酸性海藻糖酶参与了光滑念珠菌对外部海藻糖的水解,并且该酶在感染过程中也发挥了主要的毒力作用。