Suppr超能文献

TrimNet:从三重消息中学习生物医学的分子表示。

TrimNet: learning molecular representation from triplet messages for biomedicine.

机构信息

Department of Biomedical Engineering at Tsinghua University.

College of Chemistry and Chemical Engineering at Lanzhou University.

出版信息

Brief Bioinform. 2021 Jul 20;22(4). doi: 10.1093/bib/bbaa266.

Abstract

MOTIVATION

Computational methods accelerate drug discovery and play an important role in biomedicine, such as molecular property prediction and compound-protein interaction (CPI) identification. A key challenge is to learn useful molecular representation. In the early years, molecular properties are mainly calculated by quantum mechanics or predicted by traditional machine learning methods, which requires expert knowledge and is often labor-intensive. Nowadays, graph neural networks have received significant attention because of the powerful ability to learn representation from graph data. Nevertheless, current graph-based methods have some limitations that need to be addressed, such as large-scale parameters and insufficient bond information extraction.

RESULTS

In this study, we proposed a graph-based approach and employed a novel triplet message mechanism to learn molecular representation efficiently, named triplet message networks (TrimNet). We show that TrimNet can accurately complete multiple molecular representation learning tasks with significant parameter reduction, including the quantum properties, bioactivity, physiology and CPI prediction. In the experiments, TrimNet outperforms the previous state-of-the-art method by a significant margin on various datasets. Besides the few parameters and high prediction accuracy, TrimNet could focus on the atoms essential to the target properties, providing a clear interpretation of the prediction tasks. These advantages have established TrimNet as a powerful and useful computational tool in solving the challenging problem of molecular representation learning.

AVAILABILITY

The quantum and drug datasets are available on the website of MoleculeNet: http://moleculenet.ai. The source code is available in GitHub: https://github.com/yvquanli/trimnet.

CONTACT

xjyao@lzu.edu.cn, songsen@tsinghua.edu.cn.

摘要

动机

计算方法加速了药物发现,并在医学等领域发挥着重要作用,如分子性质预测和化合物-蛋白质相互作用(CPI)识别。一个关键的挑战是学习有用的分子表示。在早期,分子性质主要通过量子力学计算或通过传统的机器学习方法预测,这需要专业知识,而且往往很耗时。如今,由于从图数据中学习表示的强大能力,图神经网络受到了广泛关注。然而,当前基于图的方法存在一些需要解决的局限性,例如大规模参数和提取不足的键信息。

结果

在这项研究中,我们提出了一种基于图的方法,并采用了一种新颖的三重消息机制来高效地学习分子表示,称为三重消息网络(TrimNet)。我们表明,TrimNet 可以通过显著减少参数来准确地完成多个分子表示学习任务,包括量子性质、生物活性、生理学和 CPI 预测。在实验中,TrimNet 在各种数据集上的表现明显优于以前的最先进方法。除了参数少和预测精度高之外,TrimNet 还可以专注于对目标性质至关重要的原子,为预测任务提供清晰的解释。这些优势使 TrimNet 成为解决分子表示学习这一具有挑战性问题的强大而有用的计算工具。

可用性

量子和药物数据集可在 MoleculeNet 网站上获得:http://moleculenet.ai。源代码可在 GitHub 上获得:https://github.com/yvquanli/trimnet。

联系方式

xjyao@lzu.edu.cnsongsen@tsinghua.edu.cn

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验