Suppr超能文献

基于图神经网络预训练的药物-靶点亲和力预测

Graph neural pre-training based drug-target affinity prediction.

作者信息

Ye Qing, Sun Yaxin

机构信息

School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Wenzhou, China.

School of Computer Science and Technology (School of Artificial Intelligence), Zhejiang Normal University, Jinhua, China.

出版信息

Front Genet. 2024 Sep 16;15:1452339. doi: 10.3389/fgene.2024.1452339. eCollection 2024.

Abstract

Computational drug-target affinity prediction has the potential to accelerate drug discovery. Currently, pre-training models have achieved significant success in various fields due to their ability to train the model using vast amounts of unlabeled data. However, given the scarcity of drug-target interaction data, pre-training models can only be trained separately on drug and target data, resulting in features that are insufficient for drug-target affinity prediction. To address this issue, in this paper, we design a graph neural pre-training-based drug-target affinity prediction method (GNPDTA). This approach comprises three stages. In the first stage, two pre-training models are utilized to extract low-level features from drug atom graphs and target residue graphs, leveraging a large number of unlabeled training samples. In the second stage, two 2D convolutional neural networks are employed to combine the extracted drug atom features and target residue features into high-level representations of drugs and targets. Finally, in the third stage, a predictor is used to predict the drug-target affinity. This approach fully utilizes both unlabeled and labeled training samples, enhancing the effectiveness of pre-training models for drug-target affinity prediction. In our experiments, GNPDTA outperforms other deep learning methods, validating the efficacy of our approach.

摘要

计算药物-靶点亲和力预测有加速药物发现的潜力。目前,预训练模型由于能够使用大量未标记数据训练模型,已在各个领域取得了显著成功。然而,鉴于药物-靶点相互作用数据的稀缺性,预训练模型只能分别在药物和靶点数据上进行训练,导致其特征不足以用于药物-靶点亲和力预测。为解决这一问题,在本文中,我们设计了一种基于图神经网络预训练的药物-靶点亲和力预测方法(GNPDTA)。该方法包括三个阶段。在第一阶段,利用两个预训练模型从药物原子图和靶点残基图中提取低级特征,利用大量未标记训练样本。在第二阶段,采用两个二维卷积神经网络将提取的药物原子特征和靶点残基特征组合成药物和靶点的高级表示。最后,在第三阶段,使用一个预测器来预测药物-靶点亲和力。该方法充分利用了未标记和标记的训练样本,提高了预训练模型用于药物-靶点亲和力预测的有效性。在我们的实验中,GNPDTA优于其他深度学习方法,验证了我们方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5078/11439641/a239f1de5b6b/fgene-15-1452339-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验