Suppr超能文献

具有不同空间相关性的大规模 MIMO 系统的统计波束成形

Statistical Beamforming for Massive MIMO Systems with Distinct Spatial Correlations.

作者信息

Kim Taehyoung, Park Sangjoon

机构信息

Samsung Research, Samsung Electronics Company Ltd., Seoul 06765, Korea.

Department of Electronic Engineering, Kyonggi University, Suwon 16227, Korea.

出版信息

Sensors (Basel). 2020 Nov 2;20(21):6255. doi: 10.3390/s20216255.

Abstract

In this paper, we propose a novel statistical beamforming (SBF) method called the partial-nulling-based SBF (PN-SBF) to serve a number of users that are undergoing distinct degrees of spatial channel correlations in massive multiple-input multiple-output (MIMO) systems. We consider a massive MIMO system with two user groups. The first group experiences a low spatial channel correlation, whereas the second group has a high spatial channel correlation, which can happen in massive MIMO systems that are based on fifth-generation networks. By analyzing the statistical signal-to-interference-plus-noise ratio, it can be observed that the statistical beamforming vector for the low-correlation group should be designed as the orthogonal complement for the space spanned by the aggregated channel covariance matrices of the high-correlation group. Meanwhile, the spatial degrees of freedom for the high-correlation group should be preserved without cancelling the interference to the low-correlation group. Accordingly, a group-common pre-beamforming matrix is applied to the low-correlation group to cancel the interference to the high-correlation group. In addition, to deal with the intra-group interference in each group, the post-beamforming vector for each group is designed in the manner of maximizing the signal-to-leakage-and-noise ratio, which yields additional performance improvements for the PN-SBF. The simulation results verify that the proposed PN-SBF outperforms the conventional SBF schemes in terms of the ergodic sum rate for the massive MIMO systems with distinct spatial correlations, without the rate ceiling effect in the high signal-to-noise ratio region unlike conventional SBF schemes.

摘要

在本文中,我们提出了一种新颖的统计波束成形(SBF)方法,称为基于部分零陷的SBF(PN-SBF),用于服务大规模多输入多输出(MIMO)系统中经历不同程度空间信道相关性的多个用户。我们考虑一个具有两个用户组的大规模MIMO系统。第一组经历低空间信道相关性,而第二组具有高空间信道相关性,这在基于第五代网络的大规模MIMO系统中可能会发生。通过分析统计信干噪比,可以观察到低相关性组的统计波束成形向量应设计为高相关性组合并信道协方差矩阵所跨越空间的正交补。同时,应保留高相关性组的空间自由度,而不消除对低相关性组的干扰。因此,将一个组公共预波束成形矩阵应用于低相关性组,以消除对高相关性组的干扰。此外,为了处理每个组内的组内干扰,以最大化信漏噪比的方式设计每个组的后波束成形向量,这为PN-SBF带来了额外的性能提升。仿真结果验证了所提出的PN-SBF在具有不同空间相关性的大规模MIMO系统的遍历和速率方面优于传统的SBF方案,与传统SBF方案不同,在高信噪比区域没有速率上限效应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/753c/7663083/00bd419525d5/sensors-20-06255-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验