Suppr超能文献

温度对 [FeFe]-氢化酶催化辅因子结构动力学的影响。

Temperature Dependence of Structural Dynamics at the Catalytic Cofactor of [FeFe]-hydrogenase.

机构信息

Physics Department, Freie Universität Berlin, Arnimallee 14, Berlin 14195, Germany.

出版信息

Inorg Chem. 2020 Nov 16;59(22):16474-16488. doi: 10.1021/acs.inorgchem.0c02316. Epub 2020 Nov 4.

Abstract

[FeFe]-hydrogenases are nature's blueprint for efficient hydrogen turnover. Understanding their enzymatic mechanism may improve technological H fuel generation. The active-site cofactor (H-cluster) consists of a [4Fe-4S] cluster ([4Fe]), cysteine-linked to a diiron site ([2Fe]) carrying an azadithiolate (adt) group, terminal cyanide and carbon monoxide ligands, and a bridging carbon monoxide (μCO) in the oxidized protein (). Recently, the debate on the structure of reduced H-cluster states was intensified by the assignment of new species under cryogenic conditions. We investigated temperature effects (4-280 K) in infrared (IR) and X-ray absorption spectroscopy (XAS) data of [FeFe]-hydrogenases using fit analyses and quantum-chemical calculations. IR data from our laboratory and literature sources were evaluated. At ambient temperatures, reduced H-cluster states with a bridging hydride (μH, in and ) or with an additional proton at [4Fe] () or at the distal iron of [2Fe] () prevail. At cryogenic temperatures, these species are largely replaced by states that hold a μCO, lack [4Fe] protonation, and bind an additional proton at the adt nitrogen ( and ). XAS revealed the atomic coordinate dispersion (i.e., the Debye-Waller parameter, 2σ) of the iron-ligand bonds and Fe-Fe distances in the oxidized and reduced H-cluster. 2σ showed a temperature dependence typical for the so-called protein-glass transition, with small changes below ∼200 K and a pronounced increase above this "breakpoint". This behavior is attributed to the freezing-out of larger-scale anharmonic motions of amino acid side chains and water species. We propose that protonation at [4Fe] as well as ligand rearrangement and μH binding at [2Fe] are impaired because of restricted molecular mobility at cryogenic temperatures so that protonation can be biased toward adt. We conclude that a H-cluster with a μCO, selective [4Fe] or [2Fe] protonation, and catalytic proton transfer via adt facilitates efficient H conversion in [FeFe]-hydrogenase.

摘要

[FeFe]-氢化酶是自然界中高效氢转化的蓝图。了解其酶促机制可能会提高技术 H 燃料的生成效率。活性位点辅助因子(H 簇)由一个 [4Fe-4S] 簇 ([4Fe])、与二铁位点 ([2Fe]) 相连的半胱氨酸组成,该二铁位点带有一个氮杂二硫代物(adt)基团、末端氰化物和一氧化碳配体,以及在氧化蛋白中桥接的一氧化碳(μCO)()。最近,在低温条件下分配新物种的情况下,关于还原态 H 簇结构的争论加剧了。我们通过拟合分析和量子化学计算研究了红外(IR)和 X 射线吸收光谱(XAS)数据中温度的影响(4-280 K)在 [FeFe]-氢化酶中。评估了来自我们实验室和文献来源的 IR 数据。在环境温度下,具有桥接氢化物(μH,在 和 中)或在 [4Fe]()或 [2Fe] 的远端铁上具有额外质子的还原 H 簇状态占主导地位。在低温下,这些物种主要被具有 μCO、缺乏 [4Fe] 质子化并在 adt 氮上结合额外质子的状态取代(和)。XAS 揭示了氧化和还原 H 簇中铁配体键的原子坐标分散(即德拜-沃勒参数,2σ)和 Fe-Fe 距离。2σ 表现出典型的所谓蛋白质玻璃化转变的温度依赖性,在低于约 200 K 时变化较小,在高于此“断点”时变化显著增加。这种行为归因于氨基酸侧链和水物种的较大尺度非谐运动的冻结。我们提出,由于低温下分子迁移受限,[4Fe] 的质子化以及 [2Fe] 处的配体重排和 μH 结合受到阻碍,因此质子化可能偏向于 adt。我们得出的结论是,具有 μCO、选择性 [4Fe] 或 [2Fe] 质子化以及通过 adt 进行催化质子转移的 H 簇有助于 [FeFe]-氢化酶中高效的 H 转化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验