Department of Physics, Biophysics of Metalloenzymes, Freie Universität Berlin , 14195 Berlin, Germany.
Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin , 14195 Berlin, Germany.
J Am Chem Soc. 2017 Sep 6;139(35):12157-12160. doi: 10.1021/jacs.7b07548. Epub 2017 Aug 25.
[FeFe]-Hydrogenases contain a H-converting cofactor (H-cluster) in which a canonical [4Fe-4S] cluster is linked to a unique diiron site with three carbon monoxide (CO) and two cyanide (CN) ligands (e.g., in the oxidized state, Hox). There has been much debate whether reduction and hydrogen binding may result in alternative rotamer structures of the diiron site in a single (Hred) or double (Hsred) reduced H-cluster species. We employed infrared spectro-electrochemistry and site-selective isotope editing to monitor the CO/CN stretching vibrations in [FeFe]-hydrogenase HYDA1 from Chlamydomonas reinhardtii. Density functional theory calculations yielded vibrational modes of the diatomic ligands for conceivable H-cluster structures. Correlation analysis of experimental and computational IR spectra has facilitated an assignment of Hred and Hsred to structures with a bridging hydride at the diiron site. Pronounced ligand rotation during μH binding seems to exclude Hred and Hsred as catalytic intermediates. Only states with a conservative H-cluster geometry featuring a μCO ligand are likely involved in rapid H turnover.
[FeFe]-氢化酶含有一个 H 转化辅因子(H 簇),其中一个典型的[4Fe-4S]簇与一个独特的二铁位点相连,该位点具有三个一氧化碳(CO)和两个氰化物(CN)配体(例如,在氧化态 Hox 中)。关于二铁位点在单(Hred)或双(Hsred)还原 H 簇物种中是否可能导致替代旋转体结构,一直存在很多争议。我们采用了红外光谱电化学和位点选择性同位素编辑来监测莱茵衣藻[FeFe]-氢化酶 HYDA1 中的 CO/CN 伸缩振动。密度泛函理论计算得出了可想象的 H 簇结构中二原子配体的振动模式。实验和计算红外光谱的相关分析有助于将 Hred 和 Hsred 分配给二铁位点上具有桥接氢化物的结构。在μH 结合过程中明显的配体旋转似乎排除了 Hred 和 Hsred 作为催化中间体。只有具有保守的 H 簇几何形状和μCO 配体的状态才可能参与快速 H 转化。