University of Kansas Medical Center, USA.
University of Kansas Cancer Center, USA.
Health Informatics J. 2020 Dec;26(4):3066-3071. doi: 10.1177/1460458220966816. Epub 2020 Nov 5.
One measure of research productivity within the University of Kansas Cancer Center (KU Cancer Center) is peer-reviewed publications. Considerable effort goes into searching, capturing, reviewing, storing, and reporting cancer-relevant publications. Traditionally, the method of gathering relevant information to the publications is done manually. This manuscript describes the efforts to transition KU Cancer Center's publication gathering process from a heavily manual to a more automated and efficient process. To achieve this transition in the most customized and cost-effective manner, a homegrown, automated system was developed using open source API among other software. When comparing the automated and the manual processes over several years of data, publication search and retrieval time dropped from an average of 59 h to 35 min, which would amount to a cost savings of several thousand dollars per year. The development and adoption of an automated publications search process can offer research centers great potential for less-error prone results with a savings in time and cost.
堪萨斯大学癌症中心(KU 癌症中心)的一项研究生产力衡量标准是同行评议出版物。为了搜索、获取、审查、存储和报告与癌症相关的出版物,需要付出相当大的努力。传统上,收集与出版物相关信息的方法是手动完成的。本文档介绍了将 KU 癌症中心的出版物收集过程从高度手动化转变为更自动化和高效的过程所做的努力。为了以最定制和最具成本效益的方式实现这种转变,使用开源 API 和其他软件开发了一个内部开发的自动化系统。在比较了几年的数据中自动化和手动过程后,出版物搜索和检索时间从平均 59 小时减少到 35 分钟,每年可节省数千美元的成本。开发和采用自动化出版物搜索过程可以为研究中心提供更节省时间和成本的更不易出错的结果的巨大潜力。