Jha Nilesh Kumar, Ivanova Anastasia, Lebedev Maxim, Barifcani Ahmed, Cheremisin Alexey, Iglauer Stefan, Sangwai Jitendra S, Sarmadivaleh Mohammad
Western Australian School of Mines (WASM): Minerals, Energy and Chemical Engineering, Curtin University, 26 Dick Perry Avenue, Kensington, Western Australia 6151, Australia; Petroleum Engineering Program, Department of Ocean Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India.
Western Australian School of Mines (WASM): Minerals, Energy and Chemical Engineering, Curtin University, 26 Dick Perry Avenue, Kensington, Western Australia 6151, Australia; Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
J Colloid Interface Sci. 2021 Mar 15;586:315-325. doi: 10.1016/j.jcis.2020.10.095. Epub 2020 Oct 27.
The advanced low salinity aqueous formulations are yet to be validated as an injection fluid for enhanced oil recovery (EOR) from the carbonate reservoirs and CO geosequestration. Interaction of various ionic species present in the novel low salinity surfactant nanofluids with scCO/CO saturated aqueous phase interface and at the interface of CO saturated aqueous phase/mixed wet (with CO and Decane) limestone surface at the conditions of low salinity at reservoir conditions are to yet to be understood.
This study, carried out for the first time in low salinity at scCO loading conditions at 20 MPa pressure and 343 K temperature, comprises of wettability study of the limestone surface by aqueous phase contact angle measurements using ZrO nanoparticles (in the concentration range of 100-2000 mg/L) and 0.82 mM Hexadecyltrimethylammonium bromide (CTAB) surfactant. Molecular dynamics simulations results were used to understand the underlying mechanism of wettability alteration and interfacial tension (IFT) change.
This study reveals that a low dosage (100 mg/L) of ZrO nanoparticles forming ZrO-CTAB nano-complexes helps in wettability alteration of the rock surface to more water-wetting state; certain ionic species augment this effect when used in appropriate concentration. Also, these nano-complexes helps in scCO/CO saturated aqueous phase IFT reduction. This study can be used to design advanced low salinity injection fluids for water alternating gas injection for EOR and CO geosequestration projects.
先进的低盐度水性配方尚未被验证为用于从碳酸盐岩储层提高采收率(EOR)和二氧化碳地质封存的注入液。在储层条件下低盐度条件下,新型低盐度表面活性剂纳米流体中存在的各种离子物种与超临界二氧化碳/二氧化碳饱和水相界面以及二氧化碳饱和水相/混合湿润(含二氧化碳和癸烷)石灰岩表面界面之间的相互作用尚不清楚。
本研究首次在20MPa压力和343K温度的超临界二氧化碳负载条件下的低盐度环境中进行,包括使用氧化锆纳米颗粒(浓度范围为100 - 2000mg/L)和0.82mM十六烷基三甲基溴化铵(CTAB)表面活性剂通过水相接触角测量对石灰岩表面进行润湿性研究。分子动力学模拟结果用于理解润湿性改变和界面张力(IFT)变化的潜在机制。
本研究表明,低剂量(100mg/L)的形成氧化锆 - CTAB纳米复合物的氧化锆纳米颗粒有助于将岩石表面的润湿性改变为更亲水的状态;某些离子物种在以适当浓度使用时会增强这种效果。此外,这些纳米复合物有助于降低超临界二氧化碳/二氧化碳饱和水相的界面张力。本研究可用于设计用于EOR和二氧化碳地质封存项目的水交替气注入的先进低盐度注入液。