Suppr超能文献

基于光纤干涉仪并辅以心跳分割算法的心冲击图监测系统。

Ballistocardiography monitoring system based on optical fiber interferometer aided with heartbeat segmentation algorithm.

作者信息

Chen Shuyang, Tan Fengze, Lyu Weimin, Yu Changyuan

机构信息

Photonics Research Center, Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong, China.

Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, China.

出版信息

Biomed Opt Express. 2020 Sep 8;11(10):5458-5469. doi: 10.1364/BOE.403086. eCollection 2020 Oct 1.

Abstract

An optical fiber interferometer-based ballistocardiography (BCG) monitoring system aided with the IJK complex detection algorithm is proposed in this paper. A new phase modulation method based on a moving-coil transducer is developed to address the problem of signal fading in the optical fiber interferometer and keep the system in quadrature by the closed loop controller. As a result, a stable BCG signal without baseline drift can be obtained. This BCG monitor based on optical fiber interferometer using phase modulation method owns the advantages of compact, low-cost, portable, and user-friendly. In addition, an end-to-end modified U-net is developed to conduct pixel-wise classification in the BCG signal. This network can achieve high accuracy and shows its capability to segment IJK complex and body movement in the BCG signal. In conclusion, the proposed BCG monitoring system with IJK complex segmentation algorithm is potential and promising in healthcare applications.

摘要

本文提出了一种基于光纤干涉仪的心冲击图(BCG)监测系统,该系统采用了IJK复合波检测算法。开发了一种基于动圈式换能器的新型相位调制方法,以解决光纤干涉仪中的信号衰落问题,并通过闭环控制器使系统保持正交状态。结果,可以获得没有基线漂移的稳定BCG信号。这种基于光纤干涉仪并采用相位调制方法的BCG监测仪具有紧凑、低成本、便携和用户友好的优点。此外,还开发了一种端到端的改进U-net,用于在BCG信号中进行逐像素分类。该网络可以实现高精度,并显示出其在BCG信号中分割IJK复合波和身体运动的能力。总之,所提出的具有IJK复合波分割算法的BCG监测系统在医疗保健应用中具有潜力和前景。

相似文献

1
Ballistocardiography monitoring system based on optical fiber interferometer aided with heartbeat segmentation algorithm.
Biomed Opt Express. 2020 Sep 8;11(10):5458-5469. doi: 10.1364/BOE.403086. eCollection 2020 Oct 1.
2
Deep learning-based ballistocardiography reconstruction algorithm on the optical fiber sensor.
Opt Express. 2022 Apr 11;30(8):13121-13133. doi: 10.1364/OE.452408.
3
U-Net Neural Network for Heartbeat Detection in Ballistocardiography.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:465-468. doi: 10.1109/EMBC44109.2020.9176687.
4
Ballistocardiography with fiber optic sensor in headrest position: a feasibility study and a new processing algorithm.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:5203-6. doi: 10.1109/EMBC.2013.6610721.
5
Compressed sensing framework for BCG signals based on the optical fiber sensor.
Opt Express. 2023 Aug 28;31(18):29606-29618. doi: 10.1364/OE.499746.
6
Heartbeat Detection and Rate Estimation from Ballistocardiograms using the Gated Recurrent Unit Network.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:451-454. doi: 10.1109/EMBC44109.2020.9176726.
7
Sleep condition detection and assessment with optical fiber interferometer based on machine learning.
iScience. 2023 Jun 30;26(7):107244. doi: 10.1016/j.isci.2023.107244. eCollection 2023 Jul 21.
8
A Novel Deep Learning based Neural Network for Heartbeat Detection in Ballistocardiograph.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:2563-2566. doi: 10.1109/EMBC.2018.8512771.
9
Non-contact detection of laser-generated surface acoustic waves using fiber optic Sagnac interferometer.
Ultrasonics. 2002 May;40(1-8):803-7. doi: 10.1016/s0041-624x(02)00214-7.
10
J peak extraction from non-standard ballistocardiography data: a preliminary study.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:688-691. doi: 10.1109/EMBC.2016.7590795.

引用本文的文献

1
Sleep condition detection and assessment with optical fiber interferometer based on machine learning.
iScience. 2023 Jun 30;26(7):107244. doi: 10.1016/j.isci.2023.107244. eCollection 2023 Jul 21.
2
Wearable cardiorespiratory monitoring with stretchable elastomer optical fiber.
Biomed Opt Express. 2023 Apr 24;14(5):2260-2275. doi: 10.1364/BOE.490034. eCollection 2023 May 1.

本文引用的文献

1
Non-invasive human vital signs monitoring based on twin-core optical fiber sensors.
Biomed Opt Express. 2019 Oct 29;10(11):5940-5951. doi: 10.1364/BOE.10.005940. eCollection 2019 Nov 1.
2
Cardiovascular disease as a leading cause of death: how are pharmacists getting involved?
Integr Pharm Res Pract. 2019 Feb 4;8:1-11. doi: 10.2147/IPRP.S133088. eCollection 2019.
3
A Novel Deep Learning based Neural Network for Heartbeat Detection in Ballistocardiograph.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:2563-2566. doi: 10.1109/EMBC.2018.8512771.
5
Fully Convolutional Networks for Semantic Segmentation.
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.
6
Adaptive beat-to-beat heart rate estimation in ballistocardiograms.
IEEE Trans Inf Technol Biomed. 2011 Sep;15(5):778-86. doi: 10.1109/TITB.2011.2128337. Epub 2011 Mar 17.
8
Ballistocardiogaphic studies with acceleration and electromechanical film sensors.
Med Eng Phys. 2009 Nov;31(9):1154-65. doi: 10.1016/j.medengphy.2009.07.020. Epub 2009 Aug 26.
9
Non-invasive cardiac output trending during exercise recovery on a bathroom-scale-based ballistocardiograph.
Physiol Meas. 2009 Mar;30(3):261-74. doi: 10.1088/0967-3334/30/3/003. Epub 2009 Feb 6.
10
Automatic ballistocardiogram (BCG) beat detection using a template matching approach.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:1144-6. doi: 10.1109/IEMBS.2008.4649363.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验