Suppr超能文献

在医学主题词表词汇中寻找模式。

Searching for patterns in the MeSH vocabulary.

作者信息

Backus J E, Davidson S, Rada R

机构信息

Library Operations, National Library of Medicine, Bethesda, Maryland 20894.

出版信息

Bull Med Libr Assoc. 1987 Jul;75(3):221-7.

Abstract

NLM revises its MeSH vocabulary annually to reflect changes in biomedical literature and the health sciences community. This study tested two hypotheses about NLM's MeSH vocabulary. The first is that new terms are added to MeSH when their broader terms have an increased number of postings. One examination compared the number of postings for the broader terms of new and existing terms in the current MEDLINE file; the other compared them over time. No significant statistical difference was found in either case. A second hypothesis--that there is a relationship between the patterns of MEDLINE indexing and searching and the organization of the MeSH tree structure--was tested by comparing the distribution of searched terms in the MeSH trees with the distribution of all terms. It was found that certain trees are searched more often than could be predicted by the overall term distribution, while others are searched less frequently than expected. In summary, (1) new terms cannot be predicted by the increase in postings of existing terms, and (2) searchers' and indexers' use of the terms' tree structure does not correlate with the terms' distribution in the MeSH trees.

摘要

美国国立医学图书馆(NLM)每年都会修订其医学主题词表(MeSH)词汇,以反映生物医学文献和健康科学领域的变化。本研究对关于NLM的MeSH词汇的两个假设进行了检验。第一个假设是,当宽泛术语的文献数量增加时,新术语会被添加到MeSH中。一项检验比较了当前MEDLINE文件中新术语和现有术语的宽泛术语的文献数量;另一项检验则对它们随时间的变化进行了比较。在这两种情况下均未发现显著的统计学差异。通过比较MeSH树状结构中检索词的分布与所有术语的分布,对第二个假设——MEDLINE索引和检索模式与MeSH树状结构的组织之间存在关系——进行了检验。结果发现,某些树状结构的检索频率高于根据总体术语分布所预测的频率,而其他树状结构的检索频率则低于预期。总之,(1)现有术语文献数量的增加无法预测新术语的出现,(2)检索者和索引者对术语树状结构的使用与这些术语在MeSH树状结构中的分布不相关。

相似文献

5
NLM's MeSH vocabulary file.
Med Ref Serv Q. 1992 Summer;11(2):47-57. doi: 10.1300/J115V11N03_04.

引用本文的文献

1
Characterizing cancer information systems.
J Med Syst. 2006 Jun;30(3):153-7. doi: 10.1007/s10916-005-7993-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验