Suppr超能文献

相似文献

1
Deep learning approaches for extracting adverse events and indications of dietary supplements from clinical text.
J Am Med Inform Assoc. 2021 Mar 1;28(3):569-577. doi: 10.1093/jamia/ocaa218.
2
Extracting comprehensive clinical information for breast cancer using deep learning methods.
Int J Med Inform. 2019 Dec;132:103985. doi: 10.1016/j.ijmedinf.2019.103985. Epub 2019 Oct 2.
4
A study of deep learning approaches for medication and adverse drug event extraction from clinical text.
J Am Med Inform Assoc. 2020 Jan 1;27(1):13-21. doi: 10.1093/jamia/ocz063.
8
Extracting clinical named entity for pituitary adenomas from Chinese electronic medical records.
BMC Med Inform Decis Mak. 2022 Mar 23;22(1):72. doi: 10.1186/s12911-022-01810-z.
10
De-identification of Clinical Text via Bi-LSTM-CRF with Neural Language Models.
AMIA Annu Symp Proc. 2020 Mar 4;2019:857-863. eCollection 2019.

引用本文的文献

1
Large Language Models for Adverse Drug Events: A Clinical Perspective.
J Clin Med. 2025 Aug 4;14(15):5490. doi: 10.3390/jcm14155490.
4
RAMIE: retrieval-augmented multi-task information extraction with large language models on dietary supplements.
J Am Med Inform Assoc. 2025 Mar 1;32(3):545-554. doi: 10.1093/jamia/ocaf002.
5
Transparent deep learning to identify autism spectrum disorders (ASD) in EHR using clinical notes.
J Am Med Inform Assoc. 2024 May 20;31(6):1313-1321. doi: 10.1093/jamia/ocae080.
6
Complementary and Integrative Health Information in the literature: its lexicon and named entity recognition.
J Am Med Inform Assoc. 2024 Jan 18;31(2):426-434. doi: 10.1093/jamia/ocad216.
7
A hybrid system to understand the relations between assessments and plans in progress notes.
J Biomed Inform. 2023 May;141:104363. doi: 10.1016/j.jbi.2023.104363. Epub 2023 Apr 11.
8
Representing and utilizing clinical textual data for real world studies: An OHDSI approach.
J Biomed Inform. 2023 Jun;142:104343. doi: 10.1016/j.jbi.2023.104343. Epub 2023 Mar 17.
10
Text Mining of Adverse Events in Clinical Trials: Deep Learning Approach.
JMIR Med Inform. 2021 Dec 24;9(12):e28632. doi: 10.2196/28632.

本文引用的文献

1
Assessing the enrichment of dietary supplement coverage in the Unified Medical Language System.
J Am Med Inform Assoc. 2020 Oct 1;27(10):1547-1555. doi: 10.1093/jamia/ocaa128.
2
iDISK: the integrated DIetary Supplements Knowledge base.
J Am Med Inform Assoc. 2020 Apr 1;27(4):539-548. doi: 10.1093/jamia/ocz216.
3
Using word embeddings to expand terminology of dietary supplements on clinical notes.
JAMIA Open. 2019 Jul;2(2):246-253. doi: 10.1093/jamiaopen/ooz007. Epub 2019 Mar 28.
4
Detecting Signals of Associations between Dietary Supplement Use and Mental Disorders from Twitter.
2018 IEEE Int Conf Healthc Inform Workshop (2018). 2018 Jun;2018:53-54. doi: 10.1109/ICHI-W.2018.00016. Epub 2018 Jul 19.
5
Normalizing Dietary Supplement Product Names Using the RxNorm Model.
Stud Health Technol Inform. 2019 Aug 21;264:408-412. doi: 10.3233/SHTI190253.
6
Detecting Signals of Dietary Supplement Adverse Events from the CFSAN Adverse Event Reporting System (CAERS).
AMIA Jt Summits Transl Sci Proc. 2019 May 6;2019:258-266. eCollection 2019.
8
UArizona at the MADE1.0 NLP Challenge.
Proc Mach Learn Res. 2018 May;90:57-65.
10
Deep learning improves prediction of drug-drug and drug-food interactions.
Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4304-E4311. doi: 10.1073/pnas.1803294115. Epub 2018 Apr 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验