Suppr超能文献

使用深度学习从疫苗不良事件报告系统(VAERS)中的安全报告中提取上市后不良事件。

Extracting postmarketing adverse events from safety reports in the vaccine adverse event reporting system (VAERS) using deep learning.

机构信息

School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA.

Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

出版信息

J Am Med Inform Assoc. 2021 Jul 14;28(7):1393-1400. doi: 10.1093/jamia/ocab014.

Abstract

OBJECTIVE

Automated analysis of vaccine postmarketing surveillance narrative reports is important to understand the progression of rare but severe vaccine adverse events (AEs). This study implemented and evaluated state-of-the-art deep learning algorithms for named entity recognition to extract nervous system disorder-related events from vaccine safety reports.

MATERIALS AND METHODS

We collected Guillain-Barré syndrome (GBS) related influenza vaccine safety reports from the Vaccine Adverse Event Reporting System (VAERS) from 1990 to 2016. VAERS reports were selected and manually annotated with major entities related to nervous system disorders, including, investigation, nervous_AE, other_AE, procedure, social_circumstance, and temporal_expression. A variety of conventional machine learning and deep learning algorithms were then evaluated for the extraction of the above entities. We further pretrained domain-specific BERT (Bidirectional Encoder Representations from Transformers) using VAERS reports (VAERS BERT) and compared its performance with existing models.

RESULTS AND CONCLUSIONS

Ninety-one VAERS reports were annotated, resulting in 2512 entities. The corpus was made publicly available to promote community efforts on vaccine AEs identification. Deep learning-based methods (eg, bi-long short-term memory and BERT models) outperformed conventional machine learning-based methods (ie, conditional random fields with extensive features). The BioBERT large model achieved the highest exact match F-1 scores on nervous_AE, procedure, social_circumstance, and temporal_expression; while VAERS BERT large models achieved the highest exact match F-1 scores on investigation and other_AE. An ensemble of these 2 models achieved the highest exact match microaveraged F-1 score at 0.6802 and the second highest lenient match microaveraged F-1 score at 0.8078 among peer models.

摘要

目的

自动分析疫苗上市后监测叙述报告对于了解罕见但严重的疫苗不良反应(AE)的进展非常重要。本研究实施并评估了最先进的深度学习算法,用于从疫苗安全报告中提取与神经系统疾病相关的事件。

材料和方法

我们从 1990 年至 2016 年从疫苗不良事件报告系统(VAERS)中收集了与格林-巴利综合征(GBS)相关的流感疫苗安全性报告。选择 VAERS 报告并手动注释与神经系统疾病相关的主要实体,包括调查、神经 AE、其他 AE、程序、社会环境和时间表达。然后评估了各种传统的机器学习和深度学习算法,以提取上述实体。我们进一步使用 VAERS 报告对特定于域的 BERT(来自转换器的双向编码器表示)进行预训练(VAERS BERT),并将其性能与现有模型进行比较。

结果与结论

共注释了 91 份 VAERS 报告,产生了 2512 个实体。该语料库已公开提供,以促进社区在疫苗 AE 识别方面的努力。基于深度学习的方法(例如,双向长短时记忆和 BERT 模型)优于基于传统机器学习的方法(即具有广泛特征的条件随机场)。BioBERT 大型模型在神经 AE、程序、社会环境和时间表达方面的精确匹配 F-1 得分最高;而 VAERS BERT 大型模型在调查和其他 AE 方面的精确匹配 F-1 得分最高。这 2 个模型的集成在精确匹配微观平均 F-1 评分方面达到了 0.6802,在宽松匹配微观平均 F-1 评分方面排名第二,在同类模型中达到了 0.8078。

相似文献

2
The reporting sensitivity of the Vaccine Adverse Event Reporting System (VAERS) for anaphylaxis and for Guillain-Barré syndrome.
Vaccine. 2020 Nov 3;38(47):7458-7463. doi: 10.1016/j.vaccine.2020.09.072. Epub 2020 Oct 7.
5
Prediction of post-vaccination Guillain-Barré syndrome using data from a passive surveillance system.
Pharmacoepidemiol Drug Saf. 2021 May;30(5):602-609. doi: 10.1002/pds.5196. Epub 2021 Feb 23.
7
Extracting comprehensive clinical information for breast cancer using deep learning methods.
Int J Med Inform. 2019 Dec;132:103985. doi: 10.1016/j.ijmedinf.2019.103985. Epub 2019 Oct 2.

引用本文的文献

2
Large language models in biomedicine and health: current research landscape and future directions.
J Am Med Inform Assoc. 2024 Sep 1;31(9):1801-1811. doi: 10.1093/jamia/ocae202.
3
Applying natural language processing to patient messages to identify depression concerns in cancer patients.
J Am Med Inform Assoc. 2024 Oct 1;31(10):2255-2262. doi: 10.1093/jamia/ocae188.
6
Improving large language models for clinical named entity recognition via prompt engineering.
J Am Med Inform Assoc. 2024 Sep 1;31(9):1812-1820. doi: 10.1093/jamia/ocad259.
8
Classifying Drug Ratings Using User Reviews with Transformer-Based Language Models.
Proc (IEEE Int Conf Healthc Inform). 2022 Jun;2022:163-169. doi: 10.1109/ichi54592.2022.00035. Epub 2022 Sep 8.
10
Supervised Machine Learning-Based Decision Support for Signal Validation Classification.
Drug Saf. 2022 May;45(5):583-596. doi: 10.1007/s40264-022-01159-2. Epub 2022 May 17.

本文引用的文献

2
BERT-based Ranking for Biomedical Entity Normalization.
AMIA Jt Summits Transl Sci Proc. 2020 May 30;2020:269-277. eCollection 2020.
3
Relation Extraction from Clinical Narratives Using Pre-trained Language Models.
AMIA Annu Symp Proc. 2020 Mar 4;2019:1236-1245. eCollection 2019.
4
Advancing the state of the art in automatic extraction of adverse drug events from narratives.
J Am Med Inform Assoc. 2020 Jan 1;27(1):1-2. doi: 10.1093/jamia/ocz206.
5
Deep learning in clinical natural language processing: a methodical review.
J Am Med Inform Assoc. 2020 Mar 1;27(3):457-470. doi: 10.1093/jamia/ocz200.
6
2018 n2c2 shared task on adverse drug events and medication extraction in electronic health records.
J Am Med Inform Assoc. 2020 Jan 1;27(1):3-12. doi: 10.1093/jamia/ocz166.
7
BioBERT: a pre-trained biomedical language representation model for biomedical text mining.
Bioinformatics. 2020 Feb 15;36(4):1234-1240. doi: 10.1093/bioinformatics/btz682.
8
Enhancing clinical concept extraction with contextual embeddings.
J Am Med Inform Assoc. 2019 Nov 1;26(11):1297-1304. doi: 10.1093/jamia/ocz096.
9
A study of deep learning approaches for medication and adverse drug event extraction from clinical text.
J Am Med Inform Assoc. 2020 Jan 1;27(1):13-21. doi: 10.1093/jamia/ocz063.
10
BioWordVec, improving biomedical word embeddings with subword information and MeSH.
Sci Data. 2019 May 10;6(1):52. doi: 10.1038/s41597-019-0055-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验