Suppr超能文献

长程染色质相互作用在致病基因表达调控中的作用。

Long-range chromatin interactions in pathogenic gene expression control.

机构信息

Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon, Republic of Korea.

出版信息

Transcription. 2020 Oct;11(5):211-216. doi: 10.1080/21541264.2020.1843958. Epub 2020 Nov 5.

Abstract

A large number of distal -regulatory elements (REs) have been annotated in the human genome, which plays a central role in orchestrating spatiotemporal gene expression. Since many REs regulate non-adjacent genes, long-range RE-promoter interactions are an important factor in the functional characterization of the engaged REs. In this regard, recent studies have demonstrated that identification of long-range target genes can decipher the effect of genetic mutations residing within REs on abnormal gene expression. In addition, investigation of altered long-range REs-promoter interactions induced by chromosomal rearrangements has revealed their critical roles in pathogenic gene expression. In this review, we briefly discuss how the analysis of 3D chromatin structure can help us understand the functional impact of REs harboring disease-associated genetic variants and how chromosomal rearrangements disrupting topologically associating domains can lead to pathogenic gene expression.

摘要

大量的远端调控元件(REs)已在人类基因组中被注释,它们在时空基因表达的协调中起着核心作用。由于许多 REs 调节不相邻的基因,因此长距离的 RE-启动子相互作用是功能描述所涉及的 RE 的一个重要因素。在这方面,最近的研究表明,识别长距离靶基因可以阐明位于 RE 内的遗传突变对异常基因表达的影响。此外,对由染色体重排引起的改变的长距离 RE-启动子相互作用的研究揭示了它们在致病基因表达中的关键作用。在这篇综述中,我们简要讨论了分析 3D 染色质结构如何帮助我们理解携带疾病相关遗传变异的 RE 的功能影响,以及破坏拓扑关联域的染色体重排如何导致致病基因表达。

相似文献

1
Long-range chromatin interactions in pathogenic gene expression control.
Transcription. 2020 Oct;11(5):211-216. doi: 10.1080/21541264.2020.1843958. Epub 2020 Nov 5.
2
Genetic Variation in Long-Range Enhancers.
Curr Top Behav Neurosci. 2019;42:35-50. doi: 10.1007/7854_2019_110.
3
Chromatin modules and their implication in genomic organization and gene regulation.
Trends Genet. 2023 Feb;39(2):140-153. doi: 10.1016/j.tig.2022.11.003. Epub 2022 Dec 20.
4
The prevalence, evolution and chromatin signatures of plant regulatory elements.
Nat Plants. 2019 Dec;5(12):1250-1259. doi: 10.1038/s41477-019-0548-z. Epub 2019 Nov 18.
5
Shaping gene expression and its evolution by chromatin architecture and enhancer activity.
Curr Top Dev Biol. 2024;159:406-437. doi: 10.1016/bs.ctdb.2024.01.001. Epub 2024 Feb 1.
7
Integrative modeling of eQTLs and cis-regulatory elements suggests mechanisms underlying cell type specificity of eQTLs.
PLoS Genet. 2013;9(8):e1003649. doi: 10.1371/journal.pgen.1003649. Epub 2013 Aug 1.
8
The distributions of protein coding genes within chromatin domains in relation to human disease.
Epigenetics Chromatin. 2019 Dec 5;12(1):72. doi: 10.1186/s13072-019-0317-2.
9
Advances in higher-order chromatin architecture: the move towards 4D genome.
BMB Rep. 2021 May;54(5):233-245. doi: 10.5483/BMBRep.2021.54.5.035.
10
Evolution of 3D chromatin organization at different scales.
Curr Opin Genet Dev. 2023 Feb;78:102019. doi: 10.1016/j.gde.2022.102019. Epub 2023 Jan 3.

引用本文的文献

本文引用的文献

1
Genome-Scale Imaging of the 3D Organization and Transcriptional Activity of Chromatin.
Cell. 2020 Sep 17;182(6):1641-1659.e26. doi: 10.1016/j.cell.2020.07.032. Epub 2020 Aug 20.
2
Expanded encyclopaedias of DNA elements in the human and mouse genomes.
Nature. 2020 Jul;583(7818):699-710. doi: 10.1038/s41586-020-2493-4. Epub 2020 Jul 29.
3
Chromatin interaction analyses elucidate the roles of PRC2-bound silencers in mouse development.
Nat Genet. 2020 Mar;52(3):264-272. doi: 10.1038/s41588-020-0581-x. Epub 2020 Feb 24.
4
Systematic identification of silencers in human cells.
Nat Genet. 2020 Mar;52(3):254-263. doi: 10.1038/s41588-020-0578-5. Epub 2020 Feb 24.
5
Silencers in the spotlight.
Nat Genet. 2020 Mar;52(3):244-245. doi: 10.1038/s41588-020-0583-8.
6
Simultaneous profiling of 3D genome structure and DNA methylation in single human cells.
Nat Methods. 2019 Oct;16(10):999-1006. doi: 10.1038/s41592-019-0547-z. Epub 2019 Sep 9.
7
A compendium of promoter-centered long-range chromatin interactions in the human genome.
Nat Genet. 2019 Oct;51(10):1442-1449. doi: 10.1038/s41588-019-0494-8. Epub 2019 Sep 9.
8
Joint profiling of DNA methylation and chromatin architecture in single cells.
Nat Methods. 2019 Oct;16(10):991-993. doi: 10.1038/s41592-019-0502-z. Epub 2019 Aug 5.
9
Characterization of Structural Variations in the Context of 3D Chromatin Structure.
Mol Cells. 2019 Jul 31;42(7):512-522. doi: 10.14348/molcells.2019.0137.
10
Modeling the Pathological Long-Range Regulatory Effects of Human Structural Variation with Patient-Specific hiPSCs.
Cell Stem Cell. 2019 May 2;24(5):736-752.e12. doi: 10.1016/j.stem.2019.03.004. Epub 2019 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验