Suppr超能文献

整合 eQTL 和顺式调控元件的建模提示了 eQTL 细胞类型特异性的潜在机制。

Integrative modeling of eQTLs and cis-regulatory elements suggests mechanisms underlying cell type specificity of eQTLs.

机构信息

Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

PLoS Genet. 2013;9(8):e1003649. doi: 10.1371/journal.pgen.1003649. Epub 2013 Aug 1.

Abstract

Genetic variants in cis-regulatory elements or trans-acting regulators frequently influence the quantity and spatiotemporal distribution of gene transcription. Recent interest in expression quantitative trait locus (eQTL) mapping has paralleled the adoption of genome-wide association studies (GWAS) for the analysis of complex traits and disease in humans. Under the hypothesis that many GWAS associations tag non-coding SNPs with small effects, and that these SNPs exert phenotypic control by modifying gene expression, it has become common to interpret GWAS associations using eQTL data. To fully exploit the mechanistic interpretability of eQTL-GWAS comparisons, an improved understanding of the genetic architecture and causal mechanisms of cell type specificity of eQTLs is required. We address this need by performing an eQTL analysis in three parts: first we identified eQTLs from eleven studies on seven cell types; then we integrated eQTL data with cis-regulatory element (CRE) data from the ENCODE project; finally we built a set of classifiers to predict the cell type specificity of eQTLs. The cell type specificity of eQTLs is associated with eQTL SNP overlap with hundreds of cell type specific CRE classes, including enhancer, promoter, and repressive chromatin marks, regions of open chromatin, and many classes of DNA binding proteins. These associations provide insight into the molecular mechanisms generating the cell type specificity of eQTLs and the mode of regulation of corresponding eQTLs. Using a random forest classifier with cell specific CRE-SNP overlap as features, we demonstrate the feasibility of predicting the cell type specificity of eQTLs. We then demonstrate that CREs from a trait-associated cell type can be used to annotate GWAS associations in the absence of eQTL data for that cell type. We anticipate that such integrative, predictive modeling of cell specificity will improve our ability to understand the mechanistic basis of human complex phenotypic variation.

摘要

顺式调控元件或转录因子中的遗传变异通常会影响基因转录的数量和时空分布。人们对表达数量性状基因座(eQTL)图谱的兴趣与采用全基因组关联研究(GWAS)分析人类复杂性状和疾病的兴趣同步增长。根据许多 GWAS 关联标记具有小效应的非编码 SNP 的假设,以及这些 SNP 通过改变基因表达来控制表型,使用 eQTL 数据来解释 GWAS 关联已变得很常见。为了充分利用 eQTL-GWAS 比较的机制可解释性,需要更好地理解 eQTL 的遗传结构和因果机制以及细胞类型特异性。我们通过在三个部分进行 eQTL 分析来满足这一需求:首先,我们从七个细胞类型的十一项研究中鉴定了 eQTL;然后,我们将 eQTL 数据与 ENCODE 项目的顺式调控元件(CRE)数据进行整合;最后,我们构建了一组分类器来预测 eQTL 的细胞类型特异性。eQTL 的细胞类型特异性与 eQTL SNP 与数百种细胞类型特异性 CRE 类别的重叠有关,包括增强子、启动子和抑制性染色质标记、开放染色质区域以及许多类 DNA 结合蛋白。这些关联提供了有关产生 eQTL 细胞类型特异性的分子机制以及相应 eQTL 调控模式的见解。使用具有细胞特异性 CRE-SNP 重叠作为特征的随机森林分类器,我们证明了预测 eQTL 细胞类型特异性的可行性。然后,我们证明可以使用与性状相关的细胞类型中的 CRE 来注释该细胞类型中没有 eQTL 数据的 GWAS 关联。我们预计,这种对细胞特异性的综合、预测性建模将提高我们理解人类复杂表型变异的机制基础的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec5a/3731231/b1c35311624c/pgen.1003649.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验