Suppr超能文献

神经记忆测量反映了认知功能的内源性变化。

Neural measures of subsequent memory reflect endogenous variability in cognitive function.

机构信息

Department of Psychology.

出版信息

J Exp Psychol Learn Mem Cogn. 2021 Apr;47(4):641-651. doi: 10.1037/xlm0000966. Epub 2020 Nov 5.

Abstract

Human cognition exhibits a striking degree of variability: Sometimes we rapidly forge new associations whereas at other times new information simply does not stick. Correlations between neural activity during encoding and subsequent retrieval performance have implicated such "subsequent memory effects" (SMEs) as important for understanding the neural basis of memory formation. Uncontrolled variability in external factors that also predict memory performance, however, confounds the interpretation of these effects. By controlling for a comprehensive set of external variables, we investigated the extent to which neural correlates of successful memory encoding reflect variability in endogenous brain states. We show that external variables that reliably predict memory performance have relatively small effects on electroencephalographic (EEG) correlates of successful memory encoding. Instead, the brain activity that is diagnostic of successful encoding primarily reflects fluctuations in endogenous neural activity. These findings link neural activity during learning to endogenous states that drive variability in human cognition. (PsycInfo Database Record (c) 2021 APA, all rights reserved).

摘要

人类认知表现出显著的可变性

有时我们会迅速形成新的联想,而有时新信息根本无法记住。在编码期间的神经活动与随后的检索表现之间的相关性表明,这种“后续记忆效应”(SMEs)对于理解记忆形成的神经基础很重要。然而,预测记忆表现的外部因素的不可控变化会混淆对这些效应的解释。通过控制一整套外部变量,我们研究了成功记忆编码的神经相关性在多大程度上反映了内源性大脑状态的可变性。我们表明,可靠预测记忆表现的外部变量对成功记忆编码的脑电图(EEG)相关性的影响相对较小。相反,成功编码的大脑活动主要反映了内源性神经活动的波动。这些发现将学习期间的神经活动与驱动人类认知可变性的内源性状态联系起来。

相似文献

1
Neural measures of subsequent memory reflect endogenous variability in cognitive function.
J Exp Psychol Learn Mem Cogn. 2021 Apr;47(4):641-651. doi: 10.1037/xlm0000966. Epub 2020 Nov 5.
2
The variability puzzle in human memory.
J Exp Psychol Learn Mem Cogn. 2018 Dec;44(12):1857-1863. doi: 10.1037/xlm0000553. Epub 2018 Apr 26.
3
Neural correlates of memory in a naturalistic spatiotemporal context.
J Exp Psychol Learn Mem Cogn. 2024 Sep;50(9):1404-1420. doi: 10.1037/xlm0001341.
4
Decoding the tradeoff between encoding and retrieval to predict memory for overlapping events.
Neuroimage. 2019 Nov 1;201:116001. doi: 10.1016/j.neuroimage.2019.07.014. Epub 2019 Jul 9.
5
Neural correlates of encoding processes predicting subsequent cued recall and source memory.
Neuroreport. 2013 Mar 6;24(4):176-80. doi: 10.1097/WNR.0b013e32835d8452.
6
Targeted Memory Reactivation during Sleep Elicits Neural Signals Related to Learning Content.
J Neurosci. 2019 Aug 21;39(34):6728-6736. doi: 10.1523/JNEUROSCI.2798-18.2019. Epub 2019 Jun 24.
7
Signal Complexity of Human Intracranial EEG Tracks Successful Associative-Memory Formation across Individuals.
J Neurosci. 2018 Feb 14;38(7):1744-1755. doi: 10.1523/JNEUROSCI.2389-17.2017. Epub 2018 Jan 12.
8
Dissociating the Impact of Memorability on Electrophysiological Correlates of Memory Encoding Success.
J Cogn Neurosci. 2023 Apr 1;35(4):603-627. doi: 10.1162/jocn_a_01960.
9
The Penn Electrophysiology of Encoding and Retrieval Study.
J Exp Psychol Learn Mem Cogn. 2024 Sep;50(9):1421-1443. doi: 10.1037/xlm0001319. Epub 2024 Jul 18.
10
Age-related differences in the temporal dynamics of spectral power during memory encoding.
PLoS One. 2020 Jan 16;15(1):e0227274. doi: 10.1371/journal.pone.0227274. eCollection 2020.

引用本文的文献

1
Neural biomarkers of age-related memory change.
Psychol Aging. 2025 May;40(3):265-277. doi: 10.1037/pag0000876. Epub 2025 Feb 6.
2
The Penn Electrophysiology of Encoding and Retrieval Study.
J Exp Psychol Learn Mem Cogn. 2024 Sep;50(9):1421-1443. doi: 10.1037/xlm0001319. Epub 2024 Jul 18.
3
Multitrial free recall for evaluating memory.
Neuropsychology. 2024 Jan;38(1):58-68. doi: 10.1037/neu0000910. Epub 2023 Oct 23.
4
Identifying causal subsequent memory effects.
Proc Natl Acad Sci U S A. 2023 Mar 28;120(13):e2120288120. doi: 10.1073/pnas.2120288120. Epub 2023 Mar 23.
5
Direct brain recordings suggest a causal subsequent-memory effect.
Cereb Cortex. 2023 May 24;33(11):6891-6901. doi: 10.1093/cercor/bhad008.
6
EEG biomarkers of free recall.
Neuroimage. 2022 Feb 1;246:118748. doi: 10.1016/j.neuroimage.2021.118748. Epub 2021 Dec 1.
7
Sustained Attention and Spatial Attention Distinctly Influence Long-term Memory Encoding.
J Cogn Neurosci. 2021 Sep 1;33(10):2132-2148. doi: 10.1162/jocn_a_01748.

本文引用的文献

1
Spiking activity in the human hippocampus prior to encoding predicts subsequent memory.
Proc Natl Acad Sci U S A. 2020 Jun 16;117(24):13767-13770. doi: 10.1073/pnas.2001338117. Epub 2020 Jun 1.
2
3
Dynamics of brain activity reveal a unitary recognition signal.
J Exp Psychol Learn Mem Cogn. 2019 Mar;45(3):440-451. doi: 10.1037/xlm0000593. Epub 2018 Jul 19.
4
The variability puzzle in human memory.
J Exp Psychol Learn Mem Cogn. 2018 Dec;44(12):1857-1863. doi: 10.1037/xlm0000553. Epub 2018 Apr 26.
5
Closed-loop stimulation of temporal cortex rescues functional networks and improves memory.
Nat Commun. 2018 Feb 6;9(1):365. doi: 10.1038/s41467-017-02753-0.
6
ERP Subsequent Memory Effects Differ between Inter-Item and Unitization Encoding Tasks.
Front Hum Neurosci. 2017 Jan 30;11:30. doi: 10.3389/fnhum.2017.00030. eCollection 2017.
7
Brain Networks and α-Oscillations: Structural and Functional Foundations of Cognitive Control.
Trends Cogn Sci. 2016 Nov;20(11):805-817. doi: 10.1016/j.tics.2016.09.004. Epub 2016 Oct 1.
8
Pre-stimulus thalamic theta power predicts human memory formation.
Neuroimage. 2016 Sep;138:100-108. doi: 10.1016/j.neuroimage.2016.05.042. Epub 2016 May 19.
9
Assessing recognition memory using confidence ratings and response times.
R Soc Open Sci. 2016 Apr 13;3(4):150670. doi: 10.1098/rsos.150670. eCollection 2016 Apr.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验