Li Hai-Peng, Dou Zhao-Di, Wang Ying, Xue Ying Ying, Li Yong Peng, Hu Man-Cheng, Li Shu-Ni, Jiang Yu-Cheng, Zhai Quan-Guo
Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China.
Inorg Chem. 2020 Nov 16;59(22):16725-16736. doi: 10.1021/acs.inorgchem.0c02713. Epub 2020 Nov 5.
Both methane (CH) and acetylene (CH) are important energy source and raw chemicals in many industrial processes. The development of an energy-efficient and environmentally friendly separation and purification strategy for CH and CH is necessary. Ultramicroporous metal-organic framework (MOF) materials have shown great success in the separation and purification of small-molecule gases. Herein, the synergy effect of tritopic polytetrazolate and ditopic terephthalate ligands successfully generates a series of isoreticular ultramicroporous cadmium tetrazolate-carboxylate MOF materials (SNNU-13-16) with excellent CH and CH purification performance. Except for the uncoordinated tetrazolate N atoms serving as Lewis base sites, the pore size and pore surface of MOFs are systematically engineered by regulating dicarboxylic acid ligands varying from OH-BDC (SNNU-13) to Br-BDC (SNNU-14) to NH-BDC (SNNU-15) to 1,4-NDC (SNNU-16). Benefiting from the ultramicroporous character (3.8-5.9 Å), rich Lewis base N sites, and tunable pore environments, all of these ultramicroporous MOFs exhibit a prominent separation capacity for carbon dioxide (CO) or C2 hydrocarbons from CH and CH. Remarkably, SNNU-16 built by 1,4-NDC shows the highest ideal adsorbed solution theory CO/CH, ethylene (CH)/CH, and CH/CH separation selectivity values, which are higher than those of most famous MOFs with or without open metal sites. Dynamic breakthrough experiments show that SNNU-16 can also efficiently separate the CH/CO mixtures with a gas flow rate of 4 mL min under 1 bar and 298 K. The breakthrough time (18 min g) surpasses most best-gas-separation MOFs and nearly all other metal azolate-carboxylate MOF materials under the same conditions. The above prominently CH and CH purification abilities of SNNU-13-16 materials were further confirmed by the Grand Canonical Monte Carlo (GCMC) simulations.
甲烷(CH₄)和乙炔(C₂H₂)在许多工业过程中都是重要的能源和基础化学品。开发一种节能且环保的CH₄和C₂H₂分离与提纯策略很有必要。超微孔金属有机框架(MOF)材料在小分子气体的分离与提纯方面已取得巨大成功。在此,三齿多四唑配体和双齿对苯二甲酸酯配体的协同效应成功生成了一系列具有优异CH₄和C₂H₂提纯性能的同网状超微孔镉四唑-羧酸盐MOF材料(SNNU-13 - 16)。除了未配位的四唑氮原子作为路易斯碱位点外,通过调节二羧酸配体(从OH-BDC(SNNU-13)到Br-BDC(SNNU-14)再到NH-BDC(SNNU-15)直至1,4-NDC(SNNU-16)),对MOF的孔径和孔表面进行了系统设计。受益于超微孔特性(3.8 - 5.9 Å)、丰富的路易斯碱氮位点以及可调的孔环境,所有这些超微孔MOF对来自CH₄和C₂H₂中的二氧化碳(CO₂)或C₂烃类都表现出卓越的分离能力。值得注意的是,由1,4-NDC构建的SNNU-16表现出最高的理想吸附溶液理论CO₂/CH₄、乙烯(C₂H₄)/CH₄和C₂H₂/CH₄分离选择性值,高于大多数有或没有开放金属位点的著名MOF。动态突破实验表明,在1 bar和298 K下,SNNU-16在气体流速为4 mL min⁻¹时也能有效分离CH₄/CO₂混合物。突破时间(18 min g⁻¹)超过了大多数最佳气体分离MOF以及几乎所有其他金属氮唑-羧酸盐MOF材料在相同条件下的表现。通过巨正则蒙特卡罗(GCMC)模拟进一步证实了SNNU-13 - 16材料上述卓越的CH₄和C₂H₂提纯能力。