Vincent Galen B, Proudian Andrew P, Zimmerman Jeramy D
Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO 80401, USA; Department of Physics, Colorado School of Mines, Golden, CO 80401, USA.
Department of Physics, Colorado School of Mines, Golden, CO 80401, USA.
Ultramicroscopy. 2021 Jan;220:113151. doi: 10.1016/j.ultramic.2020.113151. Epub 2020 Oct 28.
The size and structure of spatial molecular and atomic clustering can significantly impact material properties and is therefore important to accurately quantify. Ripley's K-function (K(r)), a measure of spatial correlation, can be used to perform such quantification when the material system of interest can be represented as a marked point pattern. This work demonstrates how machine learning models based on K(r)-derived metrics can accurately estimate cluster size and intra-cluster density in simulated three dimensional (3D) point patterns containing spherical clusters of varying size; over 90% of model estimates for cluster size and intra-cluster density fall within 11% and 18% error of the true values, respectively. These K(r)-based size and density estimates are then applied to an experimental APT reconstruction to characterize MgZn clusters in a 7000 series aluminum alloy. We find that the estimates are more accurate, consistent, and robust to user interaction than estimates from the popular maximum separation algorithm. Using K(r) and machine learning to measure clustering is an accurate and repeatable way to quantify this important material attribute.
空间分子和原子团簇的大小和结构会对材料性能产生显著影响,因此准确量化非常重要。里普利K函数(K(r))是一种空间相关性度量,当感兴趣的材料系统可以表示为标记点模式时,可用于进行此类量化。这项工作展示了基于K(r)导出度量的机器学习模型如何在包含不同大小球形团簇的模拟三维(3D)点模式中准确估计团簇大小和团簇内密度;超过90%的团簇大小和团簇内密度模型估计值分别落在真实值误差的11%和18%范围内。然后,将这些基于K(r)的大小和密度估计应用于实验性APT重建,以表征7000系列铝合金中的MgZn团簇。我们发现,与流行的最大分离算法的估计相比,这些估计在用户交互方面更准确、更一致且更稳健。使用K(r)和机器学习来测量团簇是量化这一重要材料属性的一种准确且可重复的方法。