Department of Neuroscience, Stockholm Brain Institute, Karolinska Institutet Stockholm, Sweden.
Front Neuroinform. 2010 May 21;4:9. doi: 10.3389/fninf.2010.00009. eCollection 2010.
The aim of this paper is to apply a non-parametric statistical tool, Ripley's K-function, to analyze the 3-dimensional distribution of pyramidal neurons. Ripley's K-function is a widely used tool in spatial point pattern analysis. There are several approaches in 2D domains in which this function is executed and analyzed. Drawing consistent inferences on the underlying 3D point pattern distributions in various applications is of great importance as the acquisition of 3D biological data now poses lesser of a challenge due to technological progress. As of now, most of the applications of Ripley's K-function in 3D domains do not focus on the phenomenon of edge correction, which is discussed thoroughly in this paper. The main goal is to extend the theoretical and practical utilization of Ripley's K-function and corresponding tests based on bootstrap resampling from 2D to 3D domains.
本文旨在应用非参数统计工具—— Ripley 的 K 函数,分析锥体神经元的 3 维分布。Ripley 的 K 函数是空间点模式分析中广泛使用的工具。在 2D 域中有几种执行和分析该函数的方法。由于技术进步,现在获取 3D 生物数据的挑战较小,因此在各种应用中对基础 3D 点模式分布进行一致推断非常重要。到目前为止,Ripley 的 K 函数在 3D 域中的大多数应用都不关注边缘校正现象,本文对此进行了深入讨论。主要目标是将 Ripley 的 K 函数及其基于 bootstrap 重采样的相应测试从 2D 扩展到 3D 领域的理论和实际应用。