Suppr超能文献

验证一种基于患者报告结局的算法,用于对癌症患者的症状复杂程度进行分类。

Validating a Patient-Reported Outcomes-Derived Algorithm for Classifying Symptom Complexity Levels Among Patients With Cancer.

机构信息

1Alberta Health Services, and.

2University of Calgary, Calgary, Alberta, Canada.

出版信息

J Natl Compr Canc Netw. 2020 Nov 2;18(11):1518-1525. doi: 10.6004/jnccn.2020.7586. Print 2020 Nov.

Abstract

BACKGROUND

The patient-reported outcomes (PROs) symptom complexity algorithm, derived from self-reported symptom scores using the Edmonton Symptom Assessment System and concerns indicated on the Canadian Problem Checklist, has not been validated extensively.

METHODS

This is a retrospective chart review study using data from the Alberta Cancer Registry and electronic medical records from Alberta Health Services. The sample includes patients with cancer who visited a cancer facility in Alberta, Canada, from February 2016 through November 2017 (n=1,466).

RESULTS

The effect size (d=1.2) indicates that the magnitude of difference in health status between the severe- and low-complexity groups is large. The symptom complexity algorithm effectively classified subgroups of patients with cancer with distinct health status. Using Karnofsky performance status, the algorithm shows a sensitivity of 70.3%, specificity of 84.1%, positive predictive value of 79.1%, negative predictive value of 76.7%, and accuracy of 77.7%. An area under the receiver operating characteristic of 0.824 was found for the complexity algorithm, which is generally regarded as good, This same finding was also regarded as superior to the alternative algorithm generated by 2-step cluster analysis (area under the curve, 0.721).

CONCLUSIONS

The validity of the PRO-derived symptom complexity algorithm is established in this study. The algorithm demonstrated satisfactory accuracy against a clinician-driven complexity assessment and a strong correlation with the known group analysis. Furthermore, the algorithm showed a higher screening capacity compared with the algorithm generated from 2-step cluster analysis, reinforcing the importance of contextualization when classifying patients' symptoms, rather than purely relying on statistical outcomes. The algorithm carries importance in clinical settings, acting as a symptom complexity flag, helping healthcare teams identify which patients may need more timely, targeted, and individualized patient symptom management.

摘要

背景

患者报告的结局(PROs)症状复杂性算法,是通过自我报告的症状评分(使用埃德蒙顿症状评估系统)和加拿大问题清单上的关注点得出的,尚未经过广泛验证。

方法

这是一项回顾性图表研究,使用了来自加拿大艾伯塔癌症登记处和艾伯塔省卫生服务部电子病历的数据。该样本包括 2016 年 2 月至 2017 年 11 月期间在加拿大艾伯塔省癌症中心就诊的癌症患者(n=1466)。

结果

效应大小(d=1.2)表明,严重和轻度复杂组之间健康状况的差异程度很大。症状复杂性算法有效地对具有不同健康状况的癌症患者亚组进行分类。使用 Karnofsky 表现状态,该算法的灵敏度为 70.3%,特异性为 84.1%,阳性预测值为 79.1%,阴性预测值为 76.7%,准确性为 77.7%。该算法的复杂性算法的接收者操作特征曲线下面积为 0.824,通常被认为是较好的,这一发现也被认为优于两步聚类分析生成的替代算法(曲线下面积为 0.721)。

结论

本研究证实了 PRO 衍生症状复杂性算法的有效性。该算法在对临床医生驱动的复杂性评估的准确性方面表现出令人满意的结果,并且与已知组分析具有很强的相关性。此外,与两步聚类分析生成的算法相比,该算法具有更高的筛查能力,这强调了在对患者症状进行分类时,需要考虑上下文因素,而不仅仅是依赖统计结果。该算法在临床环境中具有重要意义,它可以作为症状复杂性的标志,帮助医疗团队识别哪些患者可能需要更及时、有针对性和个体化的患者症状管理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验