Tamsen Erik, Curosu Iurie, Mechtcherine Viktor, Balzani Daniel
Institute of Mechanics and Shell Structures, TU Dresden, 01062 Dresden, Germany.
Chair of Continuum Mechanics, Ruhr University Bochum, 44801 Bochum, Germany.
Materials (Basel). 2020 Nov 3;13(21):4934. doi: 10.3390/ma13214934.
This paper presents a numerical two-scale framework for the simulation of fiber reinforced concrete under impact loading. The numerical homogenization framework considers the full balance of linear momentum at the microscale. This allows for the study of microscopic inertia effects affecting the macroscale. After describing the ideas of the dynamic framework and the material models applied at the microscale, the experimental behavior of the fiber and the fiber-matrix bond under varying loading rates are discussed. To capture the most important features, a simplified matrix cracking and a strain rate sensitive fiber pullout model are utilized at the microscale. A split Hopkinson tension bar test is used as an example to present the capabilities of the framework to analyze different sources of dynamic behavior measured at the macroscale. The induced loading wave is studied and the influence of structural inertia on the measured signals within the simulation are verified. Further parameter studies allow the analysis of the macroscopic response resulting from the rate dependent fiber pullout as well as the direct study of the microscale inertia. Even though the material models and the microscale discretization used within this study are simplified, the value of the numerical two-scale framework to study material behavior under impact loading is demonstrated.
本文提出了一种用于模拟冲击载荷作用下纤维增强混凝土的数值双尺度框架。该数值均匀化框架考虑了微观尺度上线性动量的完全平衡。这使得能够研究影响宏观尺度的微观惯性效应。在描述了动态框架的概念以及在微观尺度上应用的材料模型之后,讨论了纤维以及纤维与基体界面在不同加载速率下的实验行为。为了捕捉最重要的特征,在微观尺度上采用了简化的基体开裂模型和应变率敏感的纤维拔出模型。以劈裂霍普金森拉杆试验为例,展示了该框架分析在宏观尺度上测量的不同动态行为来源的能力。研究了诱导加载波,并验证了结构惯性对模拟中测量信号的影响。进一步的参数研究允许分析由速率相关的纤维拔出引起的宏观响应以及对微观尺度惯性的直接研究。尽管本研究中使用的材料模型和微观尺度离散化是简化的,但展示了数值双尺度框架在研究冲击载荷作用下材料行为方面的价值。