Caraglio Michele, Marcone Boris, Baldovin Fulvio, Orlandini Enzo, Stella Attilio L
Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria.
Istituto Tecnico Economico Tecnologico Statale 'L. Einaudi', via Tommaso D'Aquino 8, I-36061 Bassano del Grappa, Italy.
Polymers (Basel). 2020 Nov 3;12(11):2580. doi: 10.3390/polym12112580.
We develop a theoretical description of the topological disentanglement occurring when torus knots reach the ends of a semiflexible polymer under tension. These include decays into simpler knots and total unknotting. The minimal number of crossings and the minimal knot contour length are the topological invariants playing a key role in the model. The crossings behave as particles diffusing along the chain and the application of appropriate boundary conditions at the ends of the chain accounts for the knot disentanglement. Starting from the number of particles and their positions, suitable rules allow reconstructing the type and location of the knot moving on the chain Our theory is extensively benchmarked with corresponding molecular dynamics simulations and the results show a remarkable agreement between the simulations and the theoretical predictions of the model.
我们对环面纽结在张力作用下到达半柔性聚合物末端时发生的拓扑解缠进行了理论描述。这包括衰变为更简单的纽结和完全解结。交叉数的最小值和纽结轮廓长度的最小值是在该模型中起关键作用的拓扑不变量。交叉点的行为就像沿着链扩散的粒子,在链的末端应用适当的边界条件可以解释纽结的解缠。从粒子的数量及其位置出发,合适的规则可以重建在链上移动的纽结的类型和位置。我们的理论与相应的分子动力学模拟进行了广泛的基准测试,结果表明模拟与模型的理论预测之间具有显著的一致性。