Suppr超能文献

利用多 CNN 模型进行土壤性质的同步预测。

Simultaneous Prediction of Soil Properties Using Multi_CNN Model.

机构信息

College of Information Science and Engineering, Ocean University of China, Qingdao 266000, China.

Pilot National Laboratory for Marine Science and Technology, Qingdao 266000, China.

出版信息

Sensors (Basel). 2020 Nov 3;20(21):6271. doi: 10.3390/s20216271.

Abstract

Soil nutrient prediction based on near-infrared spectroscopy has become the main research direction for rapid acquisition of soil information. The development of deep learning has greatly improved the prediction accuracy of traditional modeling methods. In view of the low efficiency and low accuracy of current soil prediction models, this paper proposes a soil multi-attribute intelligent prediction method based on convolutional neural networks, by constructing a dual-stream convolutional neural network model Multi_CNN that combines one-dimensional convolution and two-dimensional convolution, the intelligent prediction of soil multi-attribute is realized. The model extracts the characteristics of soil attributes from spectral sequences and spectrograms respectively, and multiple attributes can be predicted simultaneously by feature fusion. The model is based on two different-scale soil near-infrared spectroscopy data sets for multi-attribute prediction. The experimental results show that the RP2 of the three attributes of Total Carbon, Total Nitrogen, and Alkaline Nitrogen on the small dataset are 0.94, 0.95, 0.87, respectively, and the RP2 of the attributes of Organic Carbon, Nitrogen, and Clay on the LUCAS dataset are, respectively, 0.95, 0.91, 0.83, And compared with traditional regression models and new prediction methods commonly used in soil nutrient prediction, the multi-task model proposed in this paper is more accurate.

摘要

基于近红外光谱的土壤养分预测已成为快速获取土壤信息的主要研究方向。深度学习的发展极大地提高了传统建模方法的预测精度。针对当前土壤预测模型效率低、精度低的问题,本文提出了一种基于卷积神经网络的土壤多属性智能预测方法,通过构建一个结合一维卷积和二维卷积的双流卷积神经网络模型 Multi_CNN,实现了土壤多属性的智能预测。该模型分别从光谱序列和频谱图中提取土壤属性的特征,并通过特征融合同时预测多个属性。该模型基于两个不同尺度的土壤近红外光谱数据集进行多属性预测。实验结果表明,在小数据集上,总碳、总氮和堿性氮三个属性的 RP2 分别为 0.94、0.95 和 0.87,在 LUCAS 数据集上,有机碳、氮和粘土的属性的 RP2 分别为 0.95、0.91 和 0.83,与土壤养分预测中常用的传统回归模型和新的预测方法相比,本文提出的多任务模型更为准确。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f3/7663210/6166e346cbde/sensors-20-06271-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验