Suppr超能文献

Hox13 基因在早期斑马鱼发育过程中对于中胚层形成和轴伸长是必需的。

Hox13 genes are required for mesoderm formation and axis elongation during early zebrafish development.

机构信息

Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA.

Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA

出版信息

Development. 2020 Nov 27;147(22):dev185298. doi: 10.1242/dev.185298.

Abstract

The early vertebrate embryo extends from anterior to posterior due to the addition of neural and mesodermal cells from a neuromesodermal progenitor (NMp) population located at the most posterior end of the embryo. In order to produce mesoderm throughout this time, the NMps produce their own niche, which is high in Wnt and low in retinoic acid. Using a loss-of-function approach, we demonstrate here that the two most abundant Hox13 genes in zebrafish have a novel role in providing robustness to the NMp niche by working in concert with the niche-establishing factor Brachyury to allow mesoderm formation. Mutants lacking both and in combination with reduced Brachyury activity have synergistic posterior body defects, in the strongest case producing embryos with severe mesodermal defects that phenocopy null mutants. Our results provide a new way of understanding the essential role of the Hox13 genes in early vertebrate development.This article has an associated 'The people behind the papers' interview.

摘要

早期的脊椎动物胚胎从前端延伸到后端,这是由于位于胚胎后端的神经中胚层祖细胞(NMp)群体增加了神经和中胚层细胞。为了在这段时间内产生中胚层,NMp 产生了自己的小生境,其中 Wnt 含量高,视黄酸含量低。在这里,我们通过功能丧失的方法证明,斑马鱼中最丰富的两个 Hox13 基因通过与小生境建立因子 Brachyury 协同作用,具有为 NMp 小生境提供稳健性的新作用,从而允许中胚层形成。缺乏 和 且 Brachyury 活性降低的突变体具有协同的后体缺陷,在最强的情况下产生严重的中胚层缺陷的胚胎,表现型类似于 缺失突变体。我们的结果为理解 Hox13 基因在早期脊椎动物发育中的重要作用提供了一种新的方法。本文有一个相关的“论文背后的人”采访。

相似文献

1
3
A novel cold-sensitive mutant of ntla reveals temporal roles of brachyury in zebrafish.
Dev Dyn. 2016 Aug;245(8):874-80. doi: 10.1002/dvdy.24417. Epub 2016 May 27.
4
A gene regulatory network directed by zebrafish No tail accounts for its roles in mesoderm formation.
Proc Natl Acad Sci U S A. 2009 Mar 10;106(10):3829-34. doi: 10.1073/pnas.0808382106. Epub 2009 Feb 18.
5
Neuromesodermal specification during head-to-tail body axis formation.
Curr Top Dev Biol. 2024;159:232-271. doi: 10.1016/bs.ctdb.2024.02.012. Epub 2024 Mar 19.
6
Optochemical dissection of T-box gene-dependent medial floor plate development.
ACS Chem Biol. 2015 Jun 19;10(6):1466-75. doi: 10.1021/cb5010178. Epub 2015 Mar 17.
7
One-Eyed Pinhead and Spadetail are essential for heart and somite formation.
Nat Cell Biol. 2002 Oct;4(10):821-5. doi: 10.1038/ncb862.
8
Regulation of canonical Wnt signaling by Brachyury is essential for posterior mesoderm formation.
Dev Cell. 2008 Jul;15(1):121-33. doi: 10.1016/j.devcel.2008.04.013.
9
Zebrafish tbx-c functions during formation of midline structures.
Development. 1999 Jun;126(12):2703-13. doi: 10.1242/dev.126.12.2703.
10
A TALE/HOX code unlocks WNT signalling response towards paraxial mesoderm.
Nat Commun. 2021 Aug 26;12(1):5136. doi: 10.1038/s41467-021-25370-4.

引用本文的文献

1
Caudal fin shape imprinted during late zebrafish embryogenesis is re-patterned by the Sonic hedgehog pathway.
PLoS Biol. 2025 Aug 25;23(8):e3003336. doi: 10.1371/journal.pbio.3003336. eCollection 2025 Aug.
2
Migration of Kupffer's vesicle-derived cells is essential for tail morphogenesis in zebrafish embryos.
Development. 2025 Jun 15;152(12). doi: 10.1242/dev.204791. Epub 2025 Jun 19.
3
Origin of Ewing sarcoma by embryonic reprogramming of neural crest to mesoderm.
bioRxiv. 2024 Oct 29:2024.10.27.620438. doi: 10.1101/2024.10.27.620438.
4
The Origin and Regulation of Neuromesodermal Progenitors (NMPs) in Embryos.
Cells. 2024 Mar 21;13(6):549. doi: 10.3390/cells13060549.
5
Adaptive tail-length evolution in deer mice is associated with differential Hoxd13 expression in early development.
Nat Ecol Evol. 2024 Apr;8(4):791-805. doi: 10.1038/s41559-024-02346-3. Epub 2024 Feb 20.
6
genes control homocercal caudal fin development and evolution.
Sci Adv. 2024 Jan 19;10(3):eadj5991. doi: 10.1126/sciadv.adj5991.
8
gene expression predicts tetrapod-like axial regionalization in the skate, .
Proc Natl Acad Sci U S A. 2021 Dec 21;118(51). doi: 10.1073/pnas.2114563118.
9
Patterning with clocks and genetic cascades: Segmentation and regionalization of vertebrate versus insect body plans.
PLoS Genet. 2021 Oct 14;17(10):e1009812. doi: 10.1371/journal.pgen.1009812. eCollection 2021 Oct.

本文引用的文献

1
Organization of Embryonic Morphogenesis via Mechanical Information.
Dev Cell. 2019 Jun 17;49(6):829-839.e5. doi: 10.1016/j.devcel.2019.05.014. Epub 2019 Jun 6.
2
Untangling posterior growth and segmentation by analyzing mechanisms of axis elongation in hemichordates.
Proc Natl Acad Sci U S A. 2019 Apr 23;116(17):8403-8408. doi: 10.1073/pnas.1817496116. Epub 2019 Apr 9.
3
PTC-bearing mRNA elicits a genetic compensation response via Upf3a and COMPASS components.
Nature. 2019 Apr;568(7751):259-263. doi: 10.1038/s41586-019-1057-y. Epub 2019 Apr 3.
4
Tail Bud Progenitor Activity Relies on a Network Comprising Gdf11, Lin28, and Hox13 Genes.
Dev Cell. 2019 Feb 11;48(3):383-395.e8. doi: 10.1016/j.devcel.2018.12.004. Epub 2019 Jan 17.
6
A fluid-to-solid jamming transition underlies vertebrate body axis elongation.
Nature. 2018 Sep;561(7723):401-405. doi: 10.1038/s41586-018-0479-2. Epub 2018 Sep 5.
7
Mouse but not zebrafish requires retinoic acid for control of neuromesodermal progenitors and body axis extension.
Dev Biol. 2018 Sep 1;441(1):127-131. doi: 10.1016/j.ydbio.2018.06.019. Epub 2018 Jun 28.
8
Somite formation in the chicken embryo.
Int J Dev Biol. 2018;62(1-2-3):57-62. doi: 10.1387/ijdb.180036op.
10
Reassessing the Role of Hox Genes during Vertebrate Development and Evolution.
Trends Genet. 2018 Mar;34(3):209-217. doi: 10.1016/j.tig.2017.11.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验