Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA.
Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA
Development. 2020 Nov 27;147(22):dev185298. doi: 10.1242/dev.185298.
The early vertebrate embryo extends from anterior to posterior due to the addition of neural and mesodermal cells from a neuromesodermal progenitor (NMp) population located at the most posterior end of the embryo. In order to produce mesoderm throughout this time, the NMps produce their own niche, which is high in Wnt and low in retinoic acid. Using a loss-of-function approach, we demonstrate here that the two most abundant Hox13 genes in zebrafish have a novel role in providing robustness to the NMp niche by working in concert with the niche-establishing factor Brachyury to allow mesoderm formation. Mutants lacking both and in combination with reduced Brachyury activity have synergistic posterior body defects, in the strongest case producing embryos with severe mesodermal defects that phenocopy null mutants. Our results provide a new way of understanding the essential role of the Hox13 genes in early vertebrate development.This article has an associated 'The people behind the papers' interview.
早期的脊椎动物胚胎从前端延伸到后端,这是由于位于胚胎后端的神经中胚层祖细胞(NMp)群体增加了神经和中胚层细胞。为了在这段时间内产生中胚层,NMp 产生了自己的小生境,其中 Wnt 含量高,视黄酸含量低。在这里,我们通过功能丧失的方法证明,斑马鱼中最丰富的两个 Hox13 基因通过与小生境建立因子 Brachyury 协同作用,具有为 NMp 小生境提供稳健性的新作用,从而允许中胚层形成。缺乏 和 且 Brachyury 活性降低的突变体具有协同的后体缺陷,在最强的情况下产生严重的中胚层缺陷的胚胎,表现型类似于 缺失突变体。我们的结果为理解 Hox13 基因在早期脊椎动物发育中的重要作用提供了一种新的方法。本文有一个相关的“论文背后的人”采访。