Suppr超能文献

用于医学诊断的计算机程序中的因果推理。

Causal reasoning in computer programs for medical diagnosis.

作者信息

Patil R S

机构信息

Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge 02139.

出版信息

Comput Methods Programs Biomed. 1987 Sep-Oct;25(2):117-23. doi: 10.1016/0169-2607(87)90047-2.

Abstract

Over the last decade substantial advances have been made in the use of causal pathophysiological knowledge in artificial intelligence-based programs for medical diagnosis. Various forms of causal representations have been used. They include probabilistic models, quantitative models, qualitative models, and models that describe causal relations at multiple levels of detail. This paper briefly analyses these methods using three representative systems. Outstanding problems and possible direction in further exploitation of causal reasoning for medical decision-support systems are also discussed.

摘要

在过去十年中,基于人工智能的医学诊断程序在运用因果病理生理学知识方面取得了重大进展。人们使用了各种形式的因果表示法,包括概率模型、定量模型、定性模型以及在多个详细程度级别描述因果关系的模型。本文使用三个具有代表性的系统简要分析了这些方法,还讨论了医学决策支持系统在进一步利用因果推理方面存在的突出问题和可能的方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验