Suppr超能文献

枯草芽孢杆菌中的丙氨酸代谢。

Alanine metabolism in Bacillus subtilis.

机构信息

Centre for Bacterial Cell Biology, Biosciences Institute, Medical Faculty, Newcastle University, Newcastle Upon Tyne, UK.

出版信息

Mol Microbiol. 2021 Apr;115(4):739-757. doi: 10.1111/mmi.14640. Epub 2020 Nov 24.

Abstract

Both isomeric forms of alanine play a crucial role in bacterial growth and viability; the L-isomer of this amino acid is one of the building blocks for protein synthesis, and the D-isomer is incorporated into the bacterial cell wall. Despite a long history of genetic manipulation of Bacillus subtilis using auxotrophic markers, the genes involved in alanine metabolism have not been characterized fully. In this work, we genetically characterized the major enzymes involved in B. subtilis alanine biosynthesis and identified an alanine permease, AlaP (YtnA), which we show has a major role in the assimilation of D-alanine from the environment. Our results provide explanations for the puzzling fact that growth of B. subtilis does not result in the significant accumulation of extracellular D-alanine. Interestingly, we find that in B. subtilis, unlike E. coli where multiple enzymes have a biochemical activity that can generate alanine, the primary synthetic enzyme for alanine is encoded by alaT, although a second gene, dat, can support slow growth of an L-alanine auxotroph. However, our results also show that Dat mediates the synthesis of D-alanine and its activity is influenced by the abundance of L-alanine. This work provides valuable insights into alanine metabolism that suggests that the relative abundance of D- and L-alanine might be linked with cytosolic pool of D and L-glutamate, thereby coupling protein and cell envelope synthesis with the metabolic status of the cell. The results also suggest that, although some of the purified enzymes involved in alanine biosynthesis have been shown to catalyze reversible reactions in vitro, most of them function unidirectionally in vivo.

摘要

两种构型的丙氨酸在细菌生长和存活中都起着至关重要的作用;这种氨基酸的 L-异构体是蛋白质合成的基石之一,而 D-异构体则被整合到细菌细胞壁中。尽管枯草芽孢杆菌的遗传操作已有很长的历史,利用营养缺陷型标记物,但参与丙氨酸代谢的基因尚未得到充分的描述。在这项工作中,我们对枯草芽孢杆菌丙氨酸生物合成中涉及的主要酶进行了遗传特征分析,并鉴定出一种丙氨酸通透酶,AlaP(YtnA),它在从环境中摄取 D-丙氨酸方面起着重要作用。我们的研究结果为一个令人费解的事实提供了解释,即枯草芽孢杆菌的生长不会导致细胞外 D-丙氨酸的显著积累。有趣的是,我们发现,与大肠杆菌不同,在枯草芽孢杆菌中,虽然有多种酶具有产生丙氨酸的生化活性,但丙氨酸的主要合成酶由 alaT 编码,尽管第二个基因 dat 可以支持 L-丙氨酸营养缺陷型的缓慢生长。然而,我们的结果也表明,Dat 介导 D-丙氨酸的合成,其活性受到 L-丙氨酸丰度的影响。这项工作为丙氨酸代谢提供了有价值的见解,表明 D-和 L-丙氨酸的相对丰度可能与细胞质中 D 和 L-谷氨酸池有关,从而将蛋白质和细胞壁合成与细胞的代谢状态联系起来。结果还表明,尽管一些参与丙氨酸生物合成的纯化酶已被证明可以在体外催化可逆反应,但它们在体内大多数情况下都是单向作用的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验