Sun Yu, Wang Zekun, Zhang Pu, Wang Jingyuan, Chen Ying, Yin Chenyang, Wang Weiyun, Fan Cundong, Sun Dongdong
School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
Biomater Sci. 2020 Dec 15;8(24):7154-7165. doi: 10.1039/d0bm01738h.
Co-delivery of H2O2-generating agent and catalyst via a nano-Fenton reactor to the tumor acidic microenvironment for amplified tumor oxidation therapy has been widely studied. However, high side effects and low efficiency remain the limitations of the design and development of this process. Herein, a new nano-Fenton reactor in which mesoporous silica is integrated with Fe3O4 and palmitoyl ascorbate (Fe3O4@SiO2-PA) was designed, with the product exhibiting good dispersion, stability, uniformity and consistent spectral characteristics. The results show that Fe3O4@mSiO2-PA successfully enters cancer cells, significantly inhibits HeLa cells and 3D tumor spheroid growth in vitro via the induction of apoptosis. Meanwhile, Fe3O4@mSiO2-PA administration in vivo markedly suppresses HeLa tumor xenografts growth via the induction of apoptosis, followed by caspase-3 activation and cytochrome C release. Further investigation revealed that Fe3O4@mSiO2-PA causes enhanced production of reactive oxygen species (ROS), which subsequently triggers DNA damage and causes dysfunction of the MAPK and PI3K/AKT pathways. Importantly, Fe3O4@mSiO2-PA shows few side effects and good biocompatibility in vivo. Taken together, these results suggest that Fe3O4@mSiO2-PA inhibits HeLa cell growth in vitro and in vivo by triggering enhanced oxidative damage and regulating multiple signal pathways. Our findings validate the rational design that mesoporous silica integrated with Fe3O4 and palmitoyl ascorbate can act as a new nano-Fenton reactor for amplified tumor oxidation therapy.
通过纳米芬顿反应器将产生过氧化氢的试剂和催化剂共同递送至肿瘤酸性微环境以进行增强型肿瘤氧化治疗已得到广泛研究。然而,高副作用和低效率仍然是该过程设计和开发的局限性。在此,设计了一种新型纳米芬顿反应器,其中介孔二氧化硅与Fe3O4和棕榈酰抗坏血酸(Fe3O4@SiO2-PA)整合,产物表现出良好的分散性、稳定性、均匀性和一致的光谱特征。结果表明,Fe3O4@mSiO2-PA成功进入癌细胞,通过诱导凋亡在体外显著抑制HeLa细胞和3D肿瘤球体生长。同时,体内给予Fe3O4@mSiO2-PA通过诱导凋亡显著抑制HeLa肿瘤异种移植生长,随后激活caspase-3并释放细胞色素C。进一步研究表明,Fe3O4@mSiO2-PA导致活性氧(ROS)生成增加,随后引发DNA损伤并导致MAPK和PI3K/AKT途径功能障碍。重要的是,Fe3O4@mSiO2-PA在体内显示出很少的副作用和良好的生物相容性。综上所述,这些结果表明,Fe3O4@mSiO2-PA通过引发增强的氧化损伤和调节多种信号通路在体外和体内抑制HeLa细胞生长。我们的研究结果验证了介孔二氧化硅与Fe3O4和棕榈酰抗坏血酸整合可作为一种新型纳米芬顿反应器用于增强型肿瘤氧化治疗的合理设计。