Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
Biochim Biophys Acta Biomembr. 2021 Feb 1;1863(2):183504. doi: 10.1016/j.bbamem.2020.183504. Epub 2020 Nov 4.
Successful crystallization of membrane proteins in detergent micelles depends on key factors such as conformational stability of the protein in micellar assemblies, the protein-detergent complex (PDC) monodispersity and favorable protein crystal contacts by suitable shielding of the protein hydrophobic surface by the detergent belt. With the aim of studying the influence of amphiphilic environment on membrane protein structure, stability and crystallizability, we combine molecular dynamics (MD) simulations with SEC-MALLS and SEC-SAXS (Size Exclusion Chromatography in line with Multi Angle Laser Light Scattering or Small Angle X-ray Scattering) experiments to describe the protein-detergent interactions that could help to rationalize PDC crystallization. In this context, we compare the protein-detergent interactions of ShuA from Shigella dysenteriae in n-Dodecyl-β-D-Maltopyranoside (DDM) with ShuA inserted in a realistic model of gram-negative bacteria outer membrane (OM) containing a mixture of bacterial lipopolysaccharide and phospholipids. To evaluate the quality of the PDC models, we compute the corresponding SAXS curves from the MD trajectories and compare with the experimental ones. We show that computed SAXS curves obtained from the MD trajectories reproduce better the SAXS obtained from the SEC-SAXS experiments for ShuA surrounded by 268 DDM molecules. The MD results show that the DDM molecules form around ShuA a closed belt whose the hydrophobic thickness appears slightly smaller (~22 Å) than the hydrophobic transmembrane domain of the protein (24.6 Å) suggested by Orientations of Proteins in Membranes (OPM) database. The simulations also show that ShuA transmembrane domain is remarkably stable in all the systems except for the extracellular and periplasmic loops that exhibit larger movements due to specific molecular interactions with lipopolysaccharides (LPS). We finally point out that this detergent behavior may lead to the occlusion of the periplasmic hydrophilic surface and poor crystal contacts leading to difficulties in crystallization of ShuA in DDM.
膜蛋白在去污剂胶束中的成功结晶取决于关键因素,如蛋白质在胶束组装中的构象稳定性、蛋白质-去污剂复合物(PDC)的单分散性以及通过去污剂带适当地屏蔽蛋白质疏水面来实现有利的蛋白质晶体接触。为了研究两亲环境对膜蛋白结构、稳定性和可结晶性的影响,我们将分子动力学(MD)模拟与 SEC-MALLS 和 SEC-SAXS(尺寸排阻色谱与多角度激光光散射或小角 X 射线散射相结合)实验相结合,描述有助于合理化 PDC 结晶的蛋白质-去污剂相互作用。在这种情况下,我们比较了志贺氏菌 ShuA 在正十二烷基-β-D-麦芽糖苷(DDM)中的蛋白质-去污剂相互作用与插入含有细菌脂多糖和磷脂混合物的革兰氏阴性细菌外膜(OM)的真实模型中的 ShuA 的蛋白质-去污剂相互作用。为了评估 PDC 模型的质量,我们从 MD 轨迹计算相应的 SAXS 曲线,并将其与实验结果进行比较。我们表明,对于被 268 个 DDM 分子包围的 ShuA,从 MD 轨迹获得的计算 SAXS 曲线比从 SEC-SAXS 实验获得的 SAXS 曲线更好地重现。MD 结果表明,DDM 分子在 ShuA 周围形成一个封闭的环,其疏水性厚度略小于(~22Å)蛋白质Orientations of Proteins in Membranes(OPM)数据库中建议的疏水性跨膜结构域(24.6Å)。模拟还表明,ShuA 跨膜结构域在所有系统中都非常稳定,除了胞外和周质环,由于与脂多糖(LPS)的特定分子相互作用,它们的运动较大。最后,我们指出,这种去污剂行为可能导致周质亲水表面的闭塞和晶体接触不良,从而导致 ShuA 在 DDM 中的结晶困难。