Reimer Marike L, Bangalore Lakshmi, Waxman Stephen G, Tan Andrew M
Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA; Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA; Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA.
Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA; Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA.
J Neurosci Methods. 2021 Jan 15;348:108972. doi: 10.1016/j.jneumeth.2020.108972. Epub 2020 Nov 4.
The Neurodata Without Borders data standard (NWB) unifies diverse modalities of neurophysiology data in a single format. Integrating NWB with a database unleashes its full potential to promote collaboration, standardize analyses, capitalize on historical data, and ensures data integrity by maintaining process transparency. NWB database technology is the bedrock of analytical systems used by academic leaders including the Allen Institute and the International Brain Laboratory. Here we present the benefits of incorporating NWB design principles in a big data analytics application.
Data standards and databases are the foundation of big data analytics. To demonstrate the benefits of using these systems together, we implemented NWB in Jupyter notebooks using DataJoint to streamline database operations.
We demonstrate the utility of combining the NWB with DataJoint in a Jupyter-based electronic lab journal. We convert open-field behavioral data (using X, Y coordinates) to NWB format and process it with a DataJoint pipeline. Additional notebooks demonstrate working NWB files, data sharing, combining data from diverse sources, and retrospective analyses with data query filtering techniques.
NWB describes how to structure and store neurophysiology data and is streamlined for research settings. In contrast to other data standards, combining NWB with DataJoint's database interface can dramatically increase data analytical capabilities.
The joint use of NWB with DataJoint transforms traditional laboratory datasets and workflows. Our Jupyter notebooks showcase the analytical and collaborative advantages of adopting big data analytics and can be tailored to other modalities by researchers interested in evaluating NWB.
无国界神经数据(NWB)数据标准以单一格式统一了多种神经生理学数据模态。将NWB与数据库集成可充分发挥其潜力,以促进合作、规范分析、利用历史数据,并通过保持过程透明度来确保数据完整性。NWB数据库技术是包括艾伦脑科学研究所和国际脑实验室在内的学术领军机构所使用的分析系统的基石。在此,我们展示了在大数据分析应用中纳入NWB设计原则的益处。
数据标准和数据库是大数据分析的基础。为了证明同时使用这些系统的益处,我们在Jupyter笔记本中使用DataJoint实现了NWB,以简化数据库操作。
我们展示了在基于Jupyter的电子实验室日志中将NWB与DataJoint相结合的效用。我们将旷场行为数据(使用X、Y坐标)转换为NWB格式,并通过DataJoint管道进行处理。其他笔记本展示了可用的NWB文件、数据共享、合并来自不同来源的数据以及使用数据查询过滤技术进行回顾性分析。
NWB描述了如何构建和存储神经生理学数据,并针对研究环境进行了简化。与其他数据标准相比,将NWB与DataJoint的数据库接口相结合可显著提高数据分析能力。
NWB与DataJoint的联合使用改变了传统实验室数据集和工作流程。我们的Jupyter笔记本展示了采用大数据分析的分析和协作优势,并且对有兴趣评估NWB的研究人员而言可针对其他模态进行定制。