Motulsky H J, Ransnas L A
Department of Pharmacology, University of California, San Diego, La Jolla 92093.
FASEB J. 1987 Nov;1(5):365-74.
Many types of data are best analyzed by fitting a curve using nonlinear regression, and computer programs that perform these calculations are readily available. Like every scientific technique, however, a nonlinear regression program can produce misleading results when used inappropriately. This article reviews the use of nonlinear regression in a practical and nonmathematical manner to answer the following questions: Why is nonlinear regression superior to linear regression of transformed data? How does nonlinear regression differ from polynomial regression and cubic spline? How do nonlinear regression programs work? What choices must an investigator make before performing nonlinear regression? What do the final results mean? How can two sets of data or two fits to one set of data be compared? What problems can cause the results to be wrong? This review is designed to demystify nonlinear regression so that both its power and its limitations will be appreciated.
许多类型的数据通过使用非线性回归拟合曲线进行分析最为合适,并且执行这些计算的计算机程序很容易获得。然而,与每一项科学技术一样,非线性回归程序如果使用不当,可能会产生误导性结果。本文以实用且非数学的方式回顾非线性回归的应用,以回答以下问题:为什么非线性回归优于对变换后的数据进行线性回归?非线性回归与多项式回归和三次样条有何不同?非线性回归程序是如何工作的?研究者在进行非线性回归之前必须做出哪些选择?最终结果意味着什么?如何比较两组数据或对一组数据的两种拟合?哪些问题可能导致结果错误?这篇综述旨在揭开非线性回归的神秘面纱,以便人们既能认识到它的强大功能,也能了解其局限性。