Rettig Adam, Hait Diptarka, Bertels Luke W, Head-Gordon Martin
Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States.
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
J Chem Theory Comput. 2020 Dec 8;16(12):7473-7489. doi: 10.1021/acs.jctc.0c00986. Epub 2020 Nov 8.
The practical utility of Møller-Plesset (MP) perturbation theory is severely constrained by the use of Hartree-Fock (HF) orbitals. It has recently been shown that the use of regularized orbital-optimized MP2 orbitals and scaling of MP3 energy could lead to a significant reduction in MP3 error [Bertels, L. W.; 2019, 10, 4170 4176]. In this work, we examine whether density functional theory (DFT)-optimized orbitals can be similarly employed to improve the performance of MP theory at both the MP2 and MP3 levels. We find that the use of DFT orbitals leads to significantly improved performance for prediction of thermochemistry, barrier heights, noncovalent interactions, and dipole moments relative to the standard HF-based MP theory. Indeed, MP3 (with or without scaling) with DFT orbitals is found to surpass the accuracy of coupled-cluster singles and doubles (CCSD) for several data sets. We also found that the results are not particularly functional sensitive in most cases (although range-separated hybrid functionals with low delocalization error perform the best). MP3 based on DFT orbitals thus appears to be an efficient, noniterative () scaling wave-function approach for single-reference electronic structure computations. Scaled MP2 with DFT orbitals is also found to be quite accurate in many cases, although modern double hybrid functionals are likely to be considerably more accurate.
莫勒-普莱塞特(MP)微扰理论的实际效用受到哈特里-福克(HF)轨道使用的严重限制。最近有研究表明,使用正则化轨道优化的MP2轨道以及对MP3能量进行缩放,可能会显著降低MP3误差[贝尔特斯,L. W.;2019,10,4170 - 4176]。在这项工作中,我们研究了密度泛函理论(DFT)优化的轨道是否能类似地用于在MP2和MP3水平上提高MP理论的性能。我们发现,相对于基于标准HF的MP理论,使用DFT轨道在预测热化学、势垒高度、非共价相互作用和偶极矩方面能显著提高性能。事实上,对于几个数据集,使用DFT轨道的MP3(无论是否缩放)被发现超过了耦合簇单双激发(CCSD)的精度。我们还发现,在大多数情况下结果对泛函并不特别敏感(尽管具有低离域误差的范围分离混合泛函表现最佳)。因此,基于DFT轨道的MP3似乎是一种用于单参考电子结构计算的高效、非迭代()缩放波函数方法。在许多情况下,使用DFT轨道的缩放MP2也被发现相当准确,尽管现代双杂化泛函可能会更准确得多。