Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA.
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
J Chem Phys. 2023 Jun 21;158(23). doi: 10.1063/5.0150033.
Second-order Møller-Plesset perturbation theory (MP2) often breaks down catastrophically in small-gap systems, leaving much to be desired in its performance for myriad chemical applications such as noncovalent interactions, thermochemistry, and dative bonding in transition metal complexes. This divergence problem has reignited interest in Brillouin-Wigner perturbation theory (BWPT), which is regular at all orders but lacks size consistency and extensivity, severely limiting its application to chemistry. In this work, we propose an alternative partitioning of the Hamiltonian that leads to a regular BWPT perturbation series that, through the second order, is size-extensive, size-consistent (provided its Hartree-Fock reference is also), and orbital invariant. Our second-order size-consistent Brillouin-Wigner (BW-s2) approach can describe the exact dissociation limit of H2 in a minimal basis set, regardless of the spin polarization of the reference orbitals. More broadly, we find that BW-s2 offers improvements relative to MP2 for covalent bond breaking, noncovalent interaction energies, and metal/organic reaction energies, although rivaling coupled-cluster with single and double substitutions for thermochemical properties.
二阶 Møller-Plesset 微扰理论(MP2)在小能隙体系中经常会灾难性地失效,在众多化学应用中,如非共价相互作用、热化学和过渡金属配合物中的配位键,其性能还有很大的提升空间。这种发散问题重新激发了人们对布里渊-维格纳微扰理论(BWPT)的兴趣,该理论在所有阶次上都是正则的,但缺乏大小一致性和扩展性,严重限制了其在化学中的应用。在这项工作中,我们提出了一种替代的哈密顿量划分方法,得到了正则 BWPT 微扰级数,在二阶,它是大小扩展性的,大小一致的(只要其 Hartree-Fock 参考也是),并且轨道不变的。我们的二阶大小一致的布里渊-维格纳(BW-s2)方法可以在最小基组中描述 H2 的精确离解极限,而不管参考轨道的自旋极化如何。更广泛地说,我们发现 BW-s2 在共价键断裂、非共价相互作用能和金属/有机反应能方面相对于 MP2 有所改进,尽管在热化学性质方面与单和双取代的耦合簇相比还有差距。