Suppr超能文献

有限空间维度下非晶态固体的新型弹性不稳定性。

Novel elastic instability of amorphous solids in finite spatial dimensions.

作者信息

Shimada Masanari, Mizuno Hideyuki, Ikeda Atsushi

机构信息

Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan.

出版信息

Soft Matter. 2021 Jan 22;17(2):346-364. doi: 10.1039/d0sm01583k.

Abstract

Recently, progress has been made in the understanding of anomalous vibrational excitations in amorphous solids. In the lowest-frequency region, the vibrational spectrum follows a non-Debye quartic law, which persists up to zero frequency without any frequency gap. This gapless vibrational density of states (vDOS) suggests that glasses are on the verge of instability. This feature of marginal stability is now highlighted as a key concept in the theories of glasses. In particular, the elasticity theory based on marginal stability predicts the gapless vDOS. However, this theory yields a quadratic law and not the quartic law. To address this inconsistency, we presented a new type of instability, which is different from the conventional one, and proposed that amorphous solids are marginally stable considering the new instability in the preceding study [M. Shimada, H. Mizuno and A. Ikeda, Soft Matter, 2020, 16, 7279]. In this study, we further extend and detail the results for these instabilities. By analyzing various examples of disorder, we demonstrate that real glasses in finite spatial dimensions can be marginally stable by the proposed novel instability.

摘要

最近,在理解非晶态固体中的异常振动激发方面取得了进展。在最低频率区域,振动光谱遵循非德拜四次定律,该定律一直持续到零频率,没有任何频率间隙。这种无间隙的振动态密度(vDOS)表明玻璃处于不稳定的边缘。这种边际稳定性的特征现在被视为玻璃理论中的一个关键概念。特别是,基于边际稳定性的弹性理论预测了无间隙的vDOS。然而,该理论得出的是二次定律,而不是四次定律。为了解决这种不一致性,我们提出了一种新型的不稳定性,它不同于传统的不稳定性,并在前一项研究[M. Shimada, H. Mizuno和A. Ikeda, Soft Matter, 2020, 16, 7279]中提出,考虑到这种新的不稳定性,非晶态固体是边际稳定的。在本研究中,我们进一步扩展并详细阐述了这些不稳定性的结果。通过分析各种无序示例,我们证明了在有限空间维度中的真实玻璃可以通过所提出的新型不稳定性实现边际稳定。

相似文献

1
Novel elastic instability of amorphous solids in finite spatial dimensions.
Soft Matter. 2021 Jan 22;17(2):346-364. doi: 10.1039/d0sm01583k.
2
Vibrational spectrum derived from local mechanical response in disordered solids.
Soft Matter. 2020 Aug 21;16(31):7279-7288. doi: 10.1039/d0sm00376j. Epub 2020 Jul 22.
3
Universal Origin of Boson Peak Vibrational Anomalies in Ordered Crystals and in Amorphous Materials.
Phys Rev Lett. 2019 Apr 12;122(14):145501. doi: 10.1103/PhysRevLett.122.145501.
4
Continuum limit of the vibrational properties of amorphous solids.
Proc Natl Acad Sci U S A. 2017 Nov 14;114(46):E9767-E9774. doi: 10.1073/pnas.1709015114. Epub 2017 Oct 31.
5
Aging, Jamming, and the Limits of Stability of Amorphous Solids.
J Phys Chem B. 2018 Apr 5;122(13):3280-3295. doi: 10.1021/acs.jpcb.7b09553. Epub 2018 Jan 9.
6
Vibrational density of states of amorphous solids with long-ranged power-law-correlated disorder in elasticity.
Eur Phys J E Soft Matter. 2020 Nov 23;43(11):72. doi: 10.1140/epje/i2020-11995-2.
7
Universal non-mean-field scaling in the density of states of amorphous solids.
Phys Rev E. 2019 May;99(5-1):050901. doi: 10.1103/PhysRevE.99.050901.
8
Phonon interpretation of the 'boson peak' in supercooled liquids.
Nature. 2003 Mar 20;422(6929):289-92. doi: 10.1038/nature01475.
9
Low-frequency vibrations of jammed packings in large spatial dimensions.
Phys Rev E. 2020 May;101(5-1):052906. doi: 10.1103/PhysRevE.101.052906.
10
Universal Non-Debye Scaling in the Density of States of Amorphous Solids.
Phys Rev Lett. 2016 Jul 22;117(4):045503. doi: 10.1103/PhysRevLett.117.045503.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验