Wu Qun-Yan, Wang Cong-Zhi, Lan Jian-Hui, Chai Zhi-Fang, Shi Wei-Qun
Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
Dalton Trans. 2020 Nov 17;49(44):15895-15902. doi: 10.1039/d0dt02909b.
To evaluate how halogen and actinide atoms affect the electronic structures and bonding nature, we have theoretically investigated a series of the actinide halides An(TRENTIPS)X (An = Th-Pu; X = F-I); several of them have been synthesized by Liddle's group. The An-X bond distances decrease from An = Th to Pu for the same halides, and the harmonic vibrational frequencies for the An-X bonds are more susceptible to being affected by the halogen atoms. The analyses of bonding nature reveal that the An-X bonds have a certain covalency with a polarized character, and the σ-bonding component in the total orbital contribution is greatly larger than the corresponding π-bonding ones based on the analysis of the NOCVs (the natural orbitals for chemical valence). Furthermore, the electronic structures of the thorium complexes are obviously different from those of the uranium and transuranic analogues due to more valence electrons in Th 6d orbitals. In addition, thermodynamic results suggest that the U(TRENTIPS)Br complex is the most stable and U(TRENTIPS)Cl has the highest reactivity based on the halide exchange reaction of U(TRENTIPS)X complexes using Me3SiX. The reduction ability of the tetravalent An(TRENTIPS)X is sensitive to halogen atoms according to the calculated electron affinity of the An(TRENTIPS)X and the reactions An(TRENTIPS)X + K → An(TRENTIPS) + KX. This work presents the effect of the halogen and the actinide atoms on the structures, bonding nature and redox ability of a series of the tetravalent actinide halides with TREN ligand and facilitates our in-depth understanding of f-block elements, which could provide theoretical guidance for experimental work on actinide halides, especially for the synthetic chemistry of transuranic halides.
为了评估卤素和锕系元素原子如何影响电子结构和键合性质,我们从理论上研究了一系列锕系卤化物An(TRENTIPS)X(An = 钍 - 钚;X = 氟 - 碘);其中几种已由利德尔小组合成。对于相同的卤化物,An - X键长从An = 钍到钚逐渐减小,并且An - X键的简谐振动频率更容易受到卤素原子的影响。键合性质分析表明,基于自然化学价轨道(NOCVs)的分析,An - X键具有一定的共价性且带有极化特征,并且在总轨道贡献中σ键成分远大于相应的π键成分。此外,由于钍的6d轨道中有更多价电子,钍配合物的电子结构明显不同于铀及其超铀类似物。此外,热力学结果表明,基于使用Me3SiX对U(TRENTIPS)X配合物进行卤化物交换反应,U(TRENTIPS)Br配合物最稳定,而U(TRENTIPS)Cl具有最高的反应活性。根据计算得到的An(TRENTIPS)X的电子亲和能以及反应An(TRENTIPS)X + K → An(TRENTIPS) + KX,四价An(TRENTIPS)X的还原能力对卤素原子敏感。这项工作展示了卤素和锕系元素原子对一系列带有TREN配体的四价锕系卤化物的结构、键合性质和氧化还原能力的影响,并有助于我们深入了解f区元素,这可为锕系卤化物的实验工作,特别是超铀卤化物的合成化学提供理论指导。