Suppr超能文献

射血分数保留的心力衰竭会降低外周血液动力学并加速运动引起的神经肌肉疲劳。

Heart failure with preserved ejection fraction diminishes peripheral hemodynamics and accelerates exercise-induced neuromuscular fatigue.

机构信息

Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah.

Department of Internal Medicine, University of Utah, Salt Lake City, Utah.

出版信息

Am J Physiol Heart Circ Physiol. 2021 Jan 1;320(1):H338-H351. doi: 10.1152/ajpheart.00266.2020. Epub 2020 Nov 8.

Abstract

This study investigated the impact of HFpEF on neuromuscular fatigue and peripheral hemodynamics during small muscle mass exercise not limited by cardiac output. Eight HFpEF patients (NYHA II-III, ejection-fraction: 61 ± 2%) and eight healthy controls performed dynamic knee extension exercise (80% peak workload) to task failure and maximal intermittent quadriceps contractions (8 × 15 s). Controls repeated knee extension at the same absolute intensity as HFpEF. Leg blood flow (Q) was quantified using Doppler ultrasound. Pre/postexercise changes in quadriceps twitch torque (ΔQ; peripheral fatigue), voluntary activation (ΔVA; central fatigue), and corticospinal excitability were quantified. At the same relative intensity, HFpEF (24 ± 5 W) and controls (42 ± 6 W) had a similar time-to-task failure (∼10 min), ΔQ (∼50%), and ΔVA (∼6%). This resulted in a greater exercise-induced change in neuromuscular function per unit work in HFpEF, which was significantly correlated with a slower Q response time. Knee extension exercise at the same absolute intensity resulted in an ∼40% lower Q and greater ΔQ and ΔVA in HFpEF than in controls. Corticospinal excitability remained unaltered during exercise in both groups. Finally, despite a similar ΔVA, ΔQ was larger in HFpEF versus controls during isometric exercise. In conclusion, HFpEF patients are characterized by a similar development of central and peripheral fatigue as healthy controls when tested at the same relative intensity during exercise not limited by cardiac output. However, HFpEF patients have a greater susceptibility to neuromuscular fatigue during exercise at a given absolute intensity, and this impairs functional capacity. The patients' compromised Q response to exercise likely accounts, at least partly, for the patients' attenuated fatigue resistance. The susceptibility to neuromuscular fatigue during exercise is substantially exaggerated in individuals with heart failure with a preserved ejection fraction. The faster rate of fatigue development is associated with the compromised peripheral hemodynamic response characterizing these patients during exercise. Given the role of neuromuscular fatigue as a factor limiting exercise, this impairment likely accounts for a significant portion of the exercise intolerance typical for this population.

摘要

这项研究调查了 HFpEF 在不受心输出量限制的小肌肉群运动中对神经肌肉疲劳和外周血液动力学的影响。八名 HFpEF 患者(NYHA II-III,射血分数:61±2%)和八名健康对照者进行了动态膝关节伸展运动(80%峰值工作量)至运动失败和最大间歇性股四头肌收缩(8×15 秒)。对照者以与 HFpEF 相同的绝对强度重复膝关节伸展运动。使用多普勒超声量化腿部血流量(Q)。量化了运动前后股四头肌抽搐扭矩(ΔQ;外周疲劳)、自愿激活(ΔVA;中枢疲劳)和皮质脊髓兴奋性的变化。在相同的相对强度下,HFpEF(24±5 W)和对照组(42±6 W)的运动至失败时间(约 10 分钟)、ΔQ(约 50%)和 ΔVA(约 6%)相似。这导致 HFpEF 中每单位工作量的神经肌肉功能变化更大,这与 Q 反应时间较慢显著相关。在相同的绝对强度下进行膝关节伸展运动导致 HFpEF 中的 Q 降低约 40%,ΔQ 和 ΔVA 比对照组更大。在两组中,皮质脊髓兴奋性在运动过程中保持不变。最后,尽管 ΔVA 相似,但在等长运动中,HFpEF 中的 ΔQ 比对照组更大。总之,当在不受心输出量限制的运动中以相同的相对强度进行测试时,HFpEF 患者表现出与健康对照组相似的中枢和外周疲劳发展。然而,HFpEF 患者在给定的绝对强度下运动时更容易发生神经肌肉疲劳,这会损害其功能能力。患者对运动的 Q 反应受损至少部分解释了患者对疲劳的抵抗力减弱。在射血分数保留的心力衰竭患者中,运动时的神经肌肉疲劳易感性大大夸大。疲劳发展更快的速度与这些患者在运动过程中特征性的外周血液动力学反应受损有关。鉴于神经肌肉疲劳作为限制运动的因素的作用,这种损伤可能占该人群运动不耐受的很大一部分。

相似文献

1
Heart failure with preserved ejection fraction diminishes peripheral hemodynamics and accelerates exercise-induced neuromuscular fatigue.
Am J Physiol Heart Circ Physiol. 2021 Jan 1;320(1):H338-H351. doi: 10.1152/ajpheart.00266.2020. Epub 2020 Nov 8.
2
Hypertension restricts leg blood flow and aggravates neuromuscular fatigue during human locomotion in males.
Am J Physiol Regul Integr Comp Physiol. 2024 Nov 1;327(5):R517-R524. doi: 10.1152/ajpregu.00117.2024. Epub 2024 Aug 12.
3
Impact of age on the development of fatigue during large and small muscle mass exercise.
Am J Physiol Regul Integr Comp Physiol. 2018 Oct 1;315(4):R741-R750. doi: 10.1152/ajpregu.00156.2018. Epub 2018 Jul 11.
4
On the implication of dietary nitrate supplementation for the hemodynamic and fatigue response to cycling exercise.
J Appl Physiol (1985). 2021 Dec 1;131(6):1691-1700. doi: 10.1152/japplphysiol.00400.2021. Epub 2021 Oct 21.
6
Exacerbated central fatigue and reduced exercise capacity in early-stage breast cancer patients treated with chemotherapy.
Eur J Appl Physiol. 2023 Jul;123(7):1567-1581. doi: 10.1007/s00421-023-05177-5. Epub 2023 Mar 20.
7
Abnormal haemodynamic response to exercise in heart failure with preserved ejection fraction.
Eur J Heart Fail. 2011 Dec;13(12):1296-304. doi: 10.1093/eurjhf/hfr133. Epub 2011 Oct 5.
8
Electrically induced quadriceps fatigue in the contralateral leg impairs ipsilateral knee extensors performance.
Am J Physiol Regul Integr Comp Physiol. 2021 May 1;320(5):R747-R756. doi: 10.1152/ajpregu.00363.2020. Epub 2021 Mar 17.
9
Ascorbate attenuates cycling exercise-induced neuromuscular fatigue but fails to improve exertional dyspnea and exercise tolerance in COPD.
J Appl Physiol (1985). 2021 Jan 1;130(1):69-79. doi: 10.1152/japplphysiol.00611.2020. Epub 2020 Nov 5.

引用本文的文献

2
Statin administration improves vascular function in heart failure with preserved ejection fraction.
J Appl Physiol (1985). 2024 Apr 1;136(4):877-888. doi: 10.1152/japplphysiol.00775.2023. Epub 2024 Feb 22.
4
Evidence of impaired functional sympatholysis in patients with heart failure with preserved ejection fraction.
Am J Physiol Heart Circ Physiol. 2023 Oct 1;325(4):H806-H813. doi: 10.1152/ajpheart.00450.2023. Epub 2023 Aug 11.
5
Cardiovascular responses to static handgrip exercise and postexercise ischemia in heart failure with preserved ejection fraction.
J Appl Physiol (1985). 2023 Jun 1;134(6):1508-1519. doi: 10.1152/japplphysiol.00045.2023. Epub 2023 May 11.
6
Sympathetic and hemodynamic responses to exercise in heart failure with preserved ejection fraction.
Front Cardiovasc Med. 2023 Apr 17;10:1148324. doi: 10.3389/fcvm.2023.1148324. eCollection 2023.

本文引用的文献

1
Mechanisms of Chronotropic Incompetence in Heart Failure With Preserved Ejection Fraction.
Circ Heart Fail. 2020 Mar;13(3):e006331. doi: 10.1161/CIRCHEARTFAILURE.119.006331. Epub 2020 Mar 13.
2
Exercise Pressor Reflex Contributes to the Cardiovascular Abnormalities Characterizing: Hypertensive Humans During Exercise.
Hypertension. 2019 Dec;74(6):1468-1475. doi: 10.1161/HYPERTENSIONAHA.119.13366. Epub 2019 Oct 14.
3
Pharmacological attenuation of group III/IV muscle afferents improves endurance performance when oxygen delivery to locomotor muscles is preserved.
J Appl Physiol (1985). 2019 Nov 1;127(5):1257-1266. doi: 10.1152/japplphysiol.00490.2019. Epub 2019 Sep 12.
4
Impaired oxygen uptake kinetics in heart failure with preserved ejection fraction.
Heart. 2019 Oct;105(20):1552-1558. doi: 10.1136/heartjnl-2019-314797. Epub 2019 Jun 17.
5
Impact of age on the development of fatigue during large and small muscle mass exercise.
Am J Physiol Regul Integr Comp Physiol. 2018 Oct 1;315(4):R741-R750. doi: 10.1152/ajpregu.00156.2018. Epub 2018 Jul 11.
7
Exercise limitations in heart failure with reduced and preserved ejection fraction.
J Appl Physiol (1985). 2018 Jan 1;124(1):208-224. doi: 10.1152/japplphysiol.00747.2017. Epub 2017 Oct 19.
8
Fatigability, Exercise Intolerance, and Abnormal Skeletal Muscle Energetics in Heart Failure.
Circ Heart Fail. 2017 Jul;10(7). doi: 10.1161/CIRCHEARTFAILURE.117.004129.
9
Hemodynamic response to muscle reflex is abnormal in patients with heart failure with preserved ejection fraction.
J Appl Physiol (1985). 2017 Feb 1;122(2):376-385. doi: 10.1152/japplphysiol.00645.2016. Epub 2016 Dec 15.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验