Suppr超能文献

多变量预测模型选择结直肠手术患者的共同管理。

A Multivariable Prediction Model to Select Colorectal Surgical Patients for Co-Management.

机构信息

NOVA Medical School|Faculdade de Ciências Médicas. Lisboa; Serviço de Medicina Interna. Hospital da Luz. Lisboa. Portugal.

NOVA Medical School|Faculdade de Ciências Médicas. Lisboa. Centro de Estatística e Aplicações. Universidade de Lisboa. Lisboa. Portugal.

出版信息

Acta Med Port. 2021 Feb 1;34(2):118-127. doi: 10.20344/amp.12996. Epub 2020 Nov 9.

Abstract

INTRODUCTION

Increased life expectancy leads to older and frailer surgical patients. Co-management between medical and surgical specialities has proven favourable in complex situations. Selection of patients for co-management is full of difficulties. The aim of this study was to develop a clinical decision support tool to select surgical patients for co-management.

MATERIAL AND METHODS

Clinical data was collected from patient electronic health records with an ICD-9 code for colorectal surgery from January 2012 to December 2015 at a hospital in Lisbon. The outcome variable consists in co-management signalling. A dataset from 344 patients was used to develop the prediction model and a second data set from 168 patients was used for external validation.

RESULTS

Using logistic regression modelling the authors built a five variable (age, burden of comorbidities, ASA-PS status, surgical risk and recovery time) predictive referral model for co-management. This model has an area under the curve (AUC) of 0.86 (95% CI: 0.81 - 0.90), a predictive Brier score of 0.11, a sensitivity of 0.80, a specificity of 0.82 and an accuracy of 81.3%.

DISCUSSION

Early referral of high-risk patients may be valuable to guide the decision on the best level of post-operative clinical care. We developed a simple bedside decision tool with a good discriminatory and predictive performance in order to select patients for comanagement.

CONCLUSION

A simple bed-side clinical decision support tool of patients for co-management is viable, leading to potential improvement in early recognition and management of postoperative complications and reducing the 'failure to rescue'. Generalizability to other clinical settings requires adequate customization and validation.

摘要

简介

预期寿命的延长导致接受手术的患者年龄更大、身体更脆弱。医学和外科专业之间的共同管理已被证明在复杂情况下是有利的。选择适合共同管理的患者存在诸多困难。本研究旨在开发一种临床决策支持工具,以选择接受共同管理的外科患者。

材料和方法

从 2012 年 1 月至 2015 年 12 月,在里斯本的一家医院,使用国际疾病分类第 9 版(ICD-9)代码收集接受结直肠手术的患者的电子健康记录中的临床数据。结果变量包括共同管理信号。使用 344 名患者的数据集来开发预测模型,使用另外 168 名患者的数据集进行外部验证。

结果

使用逻辑回归建模,作者构建了一个包含 5 个变量(年龄、合并症负担、ASA-PS 状态、手术风险和恢复时间)的预测性转诊模型,用于共同管理。该模型的曲线下面积(AUC)为 0.86(95%置信区间:0.81-0.90),预测 Brier 评分 0.11,敏感性 0.80,特异性 0.82,准确性 81.3%。

讨论

早期转诊高风险患者可能有助于指导术后最佳临床护理水平的决策。我们开发了一种简单的床边决策工具,具有良好的区分和预测性能,可用于选择共同管理的患者。

结论

一种简单的床边临床决策支持工具用于共同管理患者是可行的,可能有助于早期识别和管理术后并发症,并减少“抢救失败”。在其他临床环境中的推广应用需要进行适当的定制和验证。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验