Macaulay Matthew, Rognon Pierre
School of Civil Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
Soft Matter. 2021 Jan 7;17(1):165-173. doi: 10.1039/d0sm01456g. Epub 2020 Nov 9.
Cohesive granular materials such as wet sand, snow, and powders can flow like a viscous liquid. However, the elementary mechanisms of momentum transport in such athermal particulate fluids are elusive. As a result, existing models for cohesive granular viscosity remain phenomenological and debated. Here we use discrete element simulations of plane shear flows to measure the viscosity of cohesive granular materials, while tuning the intensity of inter-particle adhesion. We establish that two adhesion-related, dimensionless numbers control their viscosity. These numbers compare the force and energy required to break a bond to the characteristic stress and kinetic energy in the flow. This progresses the commonly accepted view that only one dimensionless number could control the effect of adhesion. The resulting scaling law captures strong, non-Newtonian variations in viscosity, unifying several existing viscosity models. We then directly link these variations in viscosity to adhesion-induced modifications in the flow micro-structure and contact network. This analysis reveals the existence of two modes of momentum transport, involving either grain micro-acceleration or balanced contact forces, and shows that adhesion only affects the latter. This advances our understanding of rheological models for granular materials and other soft materials such as emulsions and suspensions, which may also involve inter-particle adhesive forces.
诸如湿沙、雪和粉末等具有内聚性的颗粒材料可以像粘性液体一样流动。然而,在这种无热颗粒流体中动量传输的基本机制尚不清楚。因此,现有的粘性颗粒粘度模型仍然是唯象的且存在争议。在这里,我们使用平面剪切流的离散元模拟来测量粘性颗粒材料的粘度,同时调整颗粒间粘附力的强度。我们确定了两个与粘附相关的无量纲数控制着它们的粘度。这些数将破坏一个键所需的力和能量与流中的特征应力和动能进行比较。这推进了普遍接受的观点,即只有一个无量纲数可以控制粘附的影响。由此产生的标度律捕捉到了粘度的强烈非牛顿变化,统一了几个现有的粘度模型。然后,我们将这些粘度变化直接与粘附引起的流动微观结构和接触网络的变化联系起来。该分析揭示了两种动量传输模式的存在,一种涉及颗粒的微观加速,另一种涉及平衡的接触力,并表明粘附仅影响后者。这增进了我们对颗粒材料以及其他软材料(如乳液和悬浮液,它们也可能涉及颗粒间粘附力)流变模型的理解。