Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545;
Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545.
Proc Natl Acad Sci U S A. 2021 May 25;118(21). doi: 10.1073/pnas.2101255118.
Slow-moving arctic soils commonly organize into striking large-scale spatial patterns called solifluction terraces and lobes. Although these features impact hillslope stability, carbon storage and release, and landscape response to climate change, no mechanistic explanation exists for their formation. Everyday fluids-such as paint dripping down walls-produce markedly similar fingering patterns resulting from competition between viscous and cohesive forces. Here we use a scaling analysis to show that soil cohesion and hydrostatic effects can lead to similar large-scale patterns in arctic soils. A large dataset of high-resolution solifluction lobe spacing and morphology across Norway supports theoretical predictions and indicates a newly observed climatic control on solifluction dynamics and patterns. Our findings provide a quantitative explanation of a common pattern on Earth and other planets, illuminating the importance of cohesive forces in landscape dynamics. These patterns operate at length and time scales previously unrecognized, with implications toward understanding fluid-solid dynamics in particulate systems with complex rheology.
缓慢移动的北极土壤通常会形成引人注目的大规模空间模式,称为融流阶地和融流舌。尽管这些特征影响山坡稳定性、碳储存和释放以及景观对气候变化的响应,但它们的形成还没有机械解释。日常液体——如墙壁上滴落的油漆——会产生明显相似的指状图案,这是由于粘性力和内聚力之间的竞争造成的。在这里,我们使用标度分析表明,土壤的内聚力和静水压力效应可以导致北极土壤中出现类似的大规模模式。挪威跨越范围的高分辨率融流舌间距和形态的大数据集支持了理论预测,并表明对融流动力学和模式的新观察到的气候控制。我们的发现为地球上和其他行星上的常见模式提供了定量解释,阐明了内聚力在景观动态中的重要性。这些模式在以前未被认识到的长度和时间尺度上运作,对理解具有复杂流变学的颗粒系统中的固液动力学具有重要意义。