Proteomics Research Center, Shahid Beheshti University of Medical Sciences, 19716-53313, Tehran, Iran.
Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, 19716-53313, Tehran, Iran.
Cell Mol Neurobiol. 2022 May;42(4):1091-1103. doi: 10.1007/s10571-020-00998-w. Epub 2020 Nov 9.
Autism spectrum disorder (ASD), a heterogeneous neurodevelopmental disorder resulting from both genetic and environmental risk factors, is manifested by deficits in cognitive function. Elucidating the cognitive disorder-relevant biological mechanisms may open up promising therapeutic approaches. In this work, we mined ASD cognitive phenotype proteins to construct and analyze protein-protein and gene-environment interaction networks. Incorporating the protein-protein interaction (PPI), human cognition proteins, and connections of autism-cognition proteins enabled us to generate an autism-cognition network (ACN). With the topological analysis of ACN, important proteins, highly clustered modules, and 3-node motifs were identified. Moreover, the impact of environmental exposures in cognitive impairment was investigated through chemicals that target the cognition-related proteins. Functional enrichment analysis of the ACN-associated modules and chemical targets revealed biological processes involved in the cognitive deficits of ASD. Among the 17 identified hub-bottlenecks in the ACN, PSD-95 was recognized as an important protein through analyzing the module and motif interactions. PSD-95 and its interacting partners constructed a cognitive-specific module. This hub-bottleneck interacted with the 89 cognition-related 3-node motifs. The identification of gene-environment interactions indicated that most of the cognitive-related proteins interact with bisphenol A (BPA) and valproic acid (VPA). Moreover, we detected significant expression changes of 56 cognitive-specific genes using four ASD microarray datasets in the GEO database, including GSE28521, GSE26415, GSE18123 and GSE29691. Our outcomes suggest future endeavors for dissecting the PSD-95 function in ASD and evaluating the various environmental conditions to discover possible mechanisms of the different levels of cognitive impairment.
自闭症谱系障碍(ASD)是一种由遗传和环境风险因素共同导致的异质性神经发育障碍,表现为认知功能缺陷。阐明与认知障碍相关的生物学机制可能为开辟有前途的治疗方法提供思路。在这项工作中,我们挖掘了 ASD 的认知表型蛋白,构建并分析了蛋白质-蛋白质和基因-环境相互作用网络。整合蛋白质-蛋白质相互作用(PPI)、人类认知蛋白以及自闭症-认知蛋白的连接,使我们能够生成自闭症-认知网络(ACN)。通过对 ACN 的拓扑分析,确定了重要的蛋白质、高度聚集的模块和 3 节点模体。此外,通过针对与认知相关的蛋白质的化学物质,研究了环境暴露对认知损伤的影响。ACN 相关模块和化学靶标的功能富集分析揭示了与 ASD 认知缺陷相关的生物学过程。在 ACN 中确定的 17 个关键瓶颈蛋白中,PSD-95 通过分析模块和模体相互作用被认为是一个重要的蛋白。PSD-95 及其相互作用伙伴构建了一个认知特异性模块。该关键瓶颈蛋白与 89 个认知相关的 3 节点模体相互作用。基因-环境相互作用的鉴定表明,大多数与认知相关的蛋白质与双酚 A(BPA)和丙戊酸(VPA)相互作用。此外,我们在 GEO 数据库中的四个 ASD 微阵列数据集(包括 GSE28521、GSE26415、GSE18123 和 GSE29691)中检测到 56 个认知特异性基因的表达发生显著变化。我们的研究结果表明,未来可以进一步研究 PSD-95 在 ASD 中的功能,并评估各种环境条件,以发现不同程度认知损伤的可能机制。