Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
Department of Clinical Molecular Biology, University of Oslo and The Akershus University Hospital, Lørenskog, Norway.
Aging Cell. 2020 Dec;19(12):e13268. doi: 10.1111/acel.13268. Epub 2020 Nov 9.
Cockayne syndrome (CS) is a rare premature aging disease, most commonly caused by mutations of the genes encoding the CSA or CSB proteins. CS patients display cachectic dwarfism and severe neurological manifestations and have an average life expectancy of 12 years. The CS proteins are involved in transcription and DNA repair, with the latter including transcription-coupled nucleotide excision repair (TC-NER). However, there is also evidence for mitochondrial dysfunction in CS, which likely contributes to the severe premature aging phenotype of this disease. While damaged mitochondria and impaired mitophagy were characterized in mice with CSB deficiency, such changes in the CS nematode model and CS patients are not fully known. Our cross-species transcriptomic analysis in CS postmortem brain tissue, CS mouse, and nematode models shows that mitochondrial dysfunction is indeed a common feature in CS. Restoration of mitochondrial dysfunction through NAD supplementation significantly improved lifespan and healthspan in the CS nematodes, highlighting mitochondrial dysfunction as a major driver of the aging features of CS. In cerebellar samples from CS patients, we found molecular signatures of dysfunctional mitochondrial dynamics and impaired mitophagy/autophagy. In primary cells depleted for CSA or CSB, this dysfunction can be corrected with supplementation of NAD precursors. Our study provides support for the interconnection between major causative aging theories, DNA damage accumulation, mitochondrial dysfunction, and compromised mitophagy/autophagy. Together, these three agents contribute to an accelerated aging program that can be averted by cellular NAD restoration.
科凯恩综合征(CS)是一种罕见的早老性疾病,最常见的病因是编码 CSA 或 CSB 蛋白的基因突变。CS 患者表现出恶病质侏儒症和严重的神经表现,平均预期寿命为 12 年。CS 蛋白参与转录和 DNA 修复,后者包括转录偶联核苷酸切除修复(TC-NER)。然而,CS 也存在线粒体功能障碍的证据,这可能导致该疾病的严重早老表型。虽然在 CSB 缺陷的小鼠中已经描述了受损的线粒体和受损的线粒体自噬,但 CS 线虫模型和 CS 患者中的这些变化并不完全清楚。我们在 CS 尸检脑组织、CS 小鼠和线虫模型中的跨物种转录组学分析表明,线粒体功能障碍确实是 CS 的一个共同特征。通过 NAD 补充来恢复线粒体功能障碍,显著延长了 CS 线虫的寿命和健康寿命,突出了线粒体功能障碍是 CS 衰老特征的主要驱动因素。在 CS 患者的小脑样本中,我们发现了功能失调的线粒体动力学和受损的线粒体自噬/自噬的分子特征。在 CSA 或 CSB 耗尽的原代细胞中,用 NAD 前体补充可以纠正这种功能障碍。我们的研究为主要衰老理论、DNA 损伤积累、线粒体功能障碍和受损的线粒体自噬/自噬之间的相互联系提供了支持。这三个因素共同导致了加速的衰老程序,通过细胞 NAD 恢复可以避免这种程序。