School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, Sichuan 610054, P. R. China.
School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), No. 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P. R. China.
Biochemistry. 2020 Nov 24;59(46):4429-4438. doi: 10.1021/acs.biochem.0c00611. Epub 2020 Nov 9.
Minor-groove base triples formed between stem 1 and loop 2 of the simian retrovirus type 1 (SRV-1) mRNA frameshifting pseudoknot are essential in stimulating -1 ribosomal frameshifting. How tertiary base triple formation affects the local stabilities of secondary structures (stem 1 and stem 2) and thus ribosomal frameshifting efficiency is not well understood. We made a short peptide nucleic acid (PNA) that is expected to invade stem 1 of the SRV-1 pseudoknot by PNA-RNA duplex formation to mimic the stem 1 unwinding process by a translating ribosome. In addition, we used a PNA for invading stem 2 in the SRV-1 pseudoknot. Our nondenaturing polyacrylamide gel electrophoresis data for the binding of PNA to the SRV-1 pseudoknot and mutants reveal that mutations in loop 2 disrupting base triple formation between loop 2 and stem 1 in the SRV-1 pseudoknot result in enhanced invasion by both PNAs. Our data suggest that tertiary stem 1-loop 2 base triple interactions in the SRV-1 pseudoknot can stabilize both of the secondary structural components, stem 1 and stem 2. Stem 2 stability is thus coupled to the structural stability of stem 1-loop 2 base triples, mediated through a long-range effect. The apparent dissociation constants of both PNAs are positively correlated with the pseudoknot mechanical stabilities and frameshifting efficiencies. The relatively simple PNA local invasion experiment may be used to characterize the energetic contribution of tertiary interactions and ligand binding in many other RNA and DNA structures.
在猿猴逆转录病毒 1 (SRV-1) mRNA 框架移位假结中,茎 1 和环 2 之间形成的小沟碱基三链对刺激 -1 核糖体框架移位至关重要。三级碱基三链形成如何影响二级结构(茎 1 和茎 2)的局部稳定性,从而影响核糖体框架移位效率,目前还不太清楚。我们合成了一个短肽核酸 (PNA),预计它可以通过 PNA-RNA 双链体形成侵入 SRV-1 假结的茎 1,从而模拟核糖体翻译时茎 1 的解链过程。此外,我们还使用了一种 PNA 侵入 SRV-1 假结的茎 2。我们对 PNA 与 SRV-1 假结及其突变体结合的非变性聚丙烯酰胺凝胶电泳数据表明,环 2 中的突变破坏了 SRV-1 假结中茎 1 和环 2 之间的碱基三链形成,导致两种 PNA 的入侵能力增强。我们的数据表明,SRV-1 假结中三级茎 1-环 2 碱基三链相互作用可以稳定二级结构元件茎 1 和茎 2。因此,茎 2 的稳定性与茎 1-环 2 碱基三链的结构稳定性相关,这是通过远程效应实现的。两种 PNA 的表观解离常数与假结力学稳定性和框架移位效率呈正相关。这种相对简单的 PNA 局部入侵实验可以用于表征许多其他 RNA 和 DNA 结构中三级相互作用和配体结合的能量贡献。