Busson Bertrand
Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France.
J Chem Phys. 2020 Nov 7;153(17):174701. doi: 10.1063/5.0022760.
We present an analytic description of doubly resonant infrared-visible sum (SFG) and difference frequency generation (DFG) spectroscopies. Within the Born-Oppenheimer and Condon approximations for harmonic oscillators, we extend the usual theory, limited to linear electron-vibration coupling, and introduce the quadratic coupling phenomena (mode distortion and mode mixing) in the excited state. The excitation spectra of vibrations in SFG and DFG experiments are calculated in integral form for arbitrary mode distortions and small amplitude mode mixing between pairs of modes. Mode distortion modifies all orders of vibronic coupling including the fundamental process, whereas mode mixing appears as a perturbation added to the distorted mode case. For small quadratic coupling amplitudes, the results may be recast in simple analytic forms after the introduction of the overlap spectral function and developed in sums and products of Lorentzian functions.
我们给出了双共振红外 - 可见和频(SFG)与差频产生(DFG)光谱学的解析描述。在谐波振荡器的玻恩 - 奥本海默和康登近似范围内,我们扩展了通常仅限于线性电子 - 振动耦合的理论,并引入了激发态中的二次耦合现象(模式畸变和模式混合)。针对任意模式畸变以及模式对之间的小幅度模式混合,以积分形式计算了SFG和DFG实验中振动的激发光谱。模式畸变会修改包括基本过程在内的所有阶次的振子 - 电子耦合,而模式混合则表现为添加到畸变模式情况的微扰。对于小的二次耦合幅度,在引入重叠光谱函数后,结果可以以简单的解析形式重铸,并以洛伦兹函数的和与积展开。